Competitive Abilities of Six Corn (Zea maysL.) Hybrids with Four Weed Control Practices

1994 ◽  
Vol 8 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Garry Tyron Ford ◽  
Jane Mt. Pleasant

Six corn hybrids were studied in field experiments in 1989 and 1990 to identify hybrids and corn plant characteristics that may be valuable in systems using reduced levels of weed control. Four weed control treatments (no-control, cultivation-only, band herbicide-plus-cultivation, and broadcast herbicide) represented main plots and maize hybrids were subplots. Medium-season hybrids with differences in height, early-season vigor, and leafiness were used. There were significant differences among hybrids in leaf angle, leaf width, leaf number, plant height, leaf area index (LAI), plant dry matter (DM) and grain and stover yields. Lower yielding hybrids had grain yields that ranged from 87 to 91% of the highest yielding hybrid. Aboveground corn characteristics were not correlated with weed numbers, weed cover, or weed biomass. A significant interaction between hybrid and weed control for grain yields was observed in 1989, suggesting that some hybrids are more competitive when weed pressure is high.

1983 ◽  
Vol 63 (2) ◽  
pp. 199-210 ◽  
Author(s):  
C. W. BULLEN ◽  
R. J. SOPER ◽  
L. D. BAILEY

Growth chamber and field experiments were conducted on Southern Manitoba soils, low in available soil phosphorus, to investigate the effects of various placement methods and levels of phosphorus fertilizer on soybean (Glycine max (L.) Merrill ’Maple Presto’). It was found that soybean responded well to applied phosphorus on low-P soil in growth chamber studies. In the first growth chamber experiment, P was applied in solution to 100%, 50%, 25%, 12.5% and 1% of the total soil volume. Dry matter yields, total phosphorus uptake and utilization of fertilizer P increased at each level of applied P as the size of the phosphated band was decreased. The results were partly attributed to greater chemical availability of P in the smaller zones of P fertilizer reaction. In a second growth chamber experiment, soybeans responded differently to phosphorus banded in six different locations. Placement of the fertilizer 2.5 cm directly below the seed was more effective in increasing dry matter yield, total phosphorus uptake and fertilizer P utilization than placement 2.5 cm and 5 cm away at the same depth or placement 5 cm below the seed, whether the band was directly below, 2.5 cm away or 5 cm away. Soybean yield responses in the field were greatest with P banded 2.5 cm directly below the seed on low-P soils. Placement of P 2.5 cm below the seed resulted in grain yields that were 64% and 50% higher (at the two sites) than those obtained in control plots. Sidebanding P, 2.5 cm below and 2.5 cm away from the seed at the same level of application, improved grain yields of control plots by 40% and 39%. Seed placement and broadcast applications of P were not as effective in increasing grain yields. Broadcasting P in fall or in spring at rates of up to 52.38 kg P/ha did not result in significantly higher grain yields than those obtained in control plots. Placement of P in contact with the seed appeared to reduce seedling emergence, resulting in depressed yields when 52.38 kg P/ha were applied. Key words: Glycine max L. Merrill, ’Maple Presto’


2004 ◽  
Vol 52 (2) ◽  
pp. 199-203 ◽  
Author(s):  
G. Singh ◽  
R. S. Jolly

Two field experiments were conducted during the kharif (rainy) season of 1999 and 2000 on a loamy sand soil to study the effect of various pre- and post-emergence herbicides on the weed infestation and grain yield of soybean. The presence of weeds in the weedy control plots resulted in 58.8 and 58.1% reduction in the grain yield in the two years compared to two hand weedings (HW) at 30 and 45 days after sowing (DAS), which gave grain yields of 1326 and 2029 kg ha-1. None of the herbicides was significantly superior to the two hand weedings treatment in influencing the grain yield. However, the pre-emergence application of 0.75 kg ha-1 S-metolachlor, and 0.5 kg ha-1 pendimethalin (pre-emergence) + HW 30 DAS were at par or numerically superior to this treatment. There was a good negative correlation between the weed dry matter at harvest and the grain yield of soybean, which showed that effective weed control is necessary for obtaining higher yields of soybean.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
L.F. CIESLIK ◽  
R.A. VIDAL ◽  
A.B. MACHADO ◽  
M.M. TREZZI

ABSTRACT Grass weeds are common in summer crops and strongly decreases the grain yield of the common bean crop. The time of herbicide application influences the variability of environmental conditions and affects the product performance. The objectives of this work were to identify the time of fluazifop-p-butyl (fluazifop) application which gives best grass weed control in the common bean crop and to elucidate the environmental variables most important for the efficacy of this herbicide. Field experiments were conducted involving five application times (2 a.m., 6 a.m., 11 a.m., 4 p.m. and 9 p.m.) and five doses of fluazifop (80, 110, 140, 170 and 200 g ha-1), with additional no-herbicide control. At the time of the herbicide application it was determined the air temperature, relative humidity, the photosynthetically active radiation (PAR) and the leaf angle, whereas the weed control and the dry mass of the weed Urochloa plantaginea was assessed at 20 days after treatment (DAT). Efficacy on grass control with fluazifop was dependent on the herbicide dose and on the time of day that the product was applied. Spray at early morning hours (6 a.m.) showed better efficacy on weed control in relation to periods during warmer conditions of the day (11 a.m. and 4 p.m.). Nocturnal fluazifop application had better weed control when compared to herbicide sprayed in the afternoon. The air temperature, relative humidity and PAR were correlated to weed leaf angle, which correlated the most with fluazifop performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunshan Yang ◽  
Xiaoxia Guo ◽  
Guangzhou Liu ◽  
Wanmao Liu ◽  
Jun Xue ◽  
...  

Solar radiation is the energy source for crop growth, as well as for the processes of accumulation, distribution, and transfer of photosynthetic products that determine maize yield. Therefore, learning the effects of different solar radiation amounts on maize growth is especially important. The present study focused on the quantitative relationships between solar radiation amounts and dry matter accumulations and transfers in maize. Over two continuous years (2017 and 2018) of field experiments, maize hybrids XY335 and ZD958 were grown at densities of 4.5 × 104 (D1), 7.5 × 104 (D2), 9 × 104 (D3), 10.5 × 104 (D4), and 12 × 104 (D5) plants/ha at Qitai Farm (89°34′E, 44°12′N), Xinjiang, China. Shading levels were 15% (S1), 30% (S2), and 50% (S3) of natural light and no shading (CK). The results showed that the yields of the commonly planted cultivars XY335 and ZD958 at S1, S2, and S3 (increasing shade treatments) were 7.3, 21.2, and 57.6% and 11.7, 31.0, and 61.8% lower than the control yields, respectively. Also, vegetative organ dry matter translocation (DMT) and its contribution to grain increased as shading levels increased under different densities. The dry matter assimilation amount after silking (AADMAS) increased as solar radiation and planting density increased. When solar radiation was <580.9 and 663.6 MJ/m2, for XY335 and ZD958, respectively, the increase in the AADMAS was primarily related to solar radiation amounts; and when solar radiation was higher than those amounts for those hybrids, an increase in the AADMAS was primarily related to planting density. Photosynthate accumulation is a key determinant of maize yield, and the contributions of the vegetative organs to the grain did not compensate for the reduced yield caused by insufficient light. Between the two cultivars, XY335 showed a better resistance to weak light than ZD958 did. To help guarantee a high maize yield under weak light conditions, it is imperative to select cultivars that have great stay-green and photosynthetic efficiency characteristics.


1993 ◽  
Vol 120 (2) ◽  
pp. 187-196 ◽  
Author(s):  
A. P. Everaarts

SUMMARYIn two field experiments in Suriname, competition between weeds and sorghum (Sorghum bicolor(L.) Moench) was studied in the rainy seasons of 1982 and 1983. The crop was kept either weed-free or without weed control for each of six different periods of time from planting. Observations made at the end of each period allowed an analysis to be made of the growth and development of a crop with and without weed control.Due to the crop canopy structure and fertilizer placement near the row, weed growth was concentrated in the rows. Starting atc.20–30 days after planting, competition with weeds reduced ground-cover and leaf area index of the crop. Competition reduced growth rates, leading to lower yields. Plant population density was not affected, but competition reduced the number of leaves present. Stem length initially increased with competition in one season, but was retarded in another. Competition for nutrients was strong and was found as early as 15 days after planting. Nitrogen was the element most competed for initially. Competition for water occurred, but competition for light seemed unlikely. About 20 weed-free days after planting were necessary to avoid yield losses and around 30 weed-free days to attain negligible weed growth at harvest. Yield reduction was mainly due to a decrease in number of grains per panicle. Competition during floret establishment (c.30–40 days after planting) should be avoided.


1997 ◽  
Vol 11 (4) ◽  
pp. 748-754
Author(s):  
Gail A. Wicks ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Imidazolinone-resistant and -tolerant corn hybrids give growers a new weed control option. Field experiments were conducted in 1993 and 1994 to evaluate imazethapyr for controlling weeds in no-till corn planted into winter wheat stubble in a winter wheat–ecofallow corn rotation. Imidazolinone-tolerant (IT) and imidazolinone-resistant (IR) corn were protected genetically from injury by imazethapyr that was applied preplant, preemergence, or postemergence to ‘Pioneer Brand 3417,’ ‘Pioneer Brand 3417 IR,’ ‘ICI Seeds 8532,’ and ‘ICI Seeds 8532 IT’ hybrids. No difference in corn injury occurred between IR and IT corn. Imazethapyr applied to resistant or tolerant corn hybrids could be used to control weeds in ecofallow corn. Imazethapyr at 35 or 70 g ai/ha controlled triazine-resistant kochia better than the standard herbicide treatment of metolachlor plus cyanazine.


2016 ◽  
Vol 41 (4) ◽  
pp. 759-772
Author(s):  
SS Kakon ◽  
MSU Bhuiya ◽  
SMA Hossain ◽  
Q Naher ◽  
Md DH Bhuiyan

Field experiments were conducted during rabi (winter) seasons of 2010-11 and 2011-12 at the Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur to study the effects of nitrogen and phosphorus on growth, dry matter production and yield of French bean. A randomized complete block design was followed with 10 combinations of N (0,50, 100, 150 and 200) and P (0,22, 33, 44 and 55) kg ha-1 along with a blanket dose of control. All the treatments showed the maximum leaf area index (LAI) at 65 days after sowing (DAS). All the treatments showed the maximum total dry matter production, crop growth rate and net assimilation rate at harvest and at 55-65 DAS, respectively in both the years. LAI, dry matter production, CGR, NAR and seed yield significantly increased with the increase in nitrogen and phosphorus level upto 150 kg N and 44 P kg ha-1 , respectively. Similar trend was followed in maximum number of pods (9.45) and seed yield (1563.33 kg ha-1). The treatment comprises with 150 kg N and 44 P Kg ha-1 gave the highest seed yield which was 51.40 and 54.30 % higher than control plots.Bangladesh J. Agril. Res. 41(4): 759-772, December 2016


2010 ◽  
Vol 24 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Santiago M. Ulloa ◽  
Avishek Datta ◽  
Stevan Z. Knezevic

Propane flaming could be an effective alternative tool for weed control in organic cropping systems. However, response of major weeds to broadcast flaming must be determined to optimize its proper use. Therefore, field experiments were conducted at the Haskell Agricultural Laboratory, Concord, NE in 2007 and 2008 using six propane doses and four weed species, including green foxtail, yellow foxtail, redroot pigweed, and common waterhemp. Our objective was to describe dose–response curves for weed control with propane. Propane flaming response was evaluated at three different growth stages for each weed species. The propane doses were 0, 12, 31, 50, 68, and 87 kg ha−1. Flaming treatments were applied utilizing a custom-built flamer mounted on a four-wheeler (all-terrain vehicle) moving at a constant speed of 6.4 km h−1. The response of the weed species to propane flaming was evaluated in terms of visual ratings of weed control and dry matter recorded at 14 d after treatment. Weed species response to propane doses were described by log-logistic models relating propane dose to visual ratings or plant dry matter. Overall, response of the weed species to propane flaming varied among species, growth stages, and propane dose. In general, foxtail species were more tolerant than pigweed species. For example, about 85 and 86 kg ha−1were the calculated doses needed for 90% dry matter reduction in five-leaf green foxtail and four-leaf yellow foxtail compared with significantly lower doses of 68 and 46 kg ha−1of propane for five-leaf redroot pigweed and common waterhemp, respectively. About 90% dry matter reduction in pigweed species was achieved with propane dose ranging from 40 to 80 kg ha−1, depending on the growth stage when flaming was conducted. A similar dose of 40 to 60 kg ha−1provided 80% reduction in dry matter for both foxtail species when flaming was done at their vegetative growth stage. However, none of the doses we tested could provide 90% dry matter reduction in foxtail species at flowering stage. It is important to note that foxtail species started regrowing 2 to 3 wk after flaming. Broadcast flaming has potential for control or suppression of weeds in organic farming.


2011 ◽  
Vol 25 (4) ◽  
pp. 556-562 ◽  
Author(s):  
Muthukumar V. Bagavathiannan ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

Whether season-long weed control can be achieved in a furrow-irrigated rice system with similar herbicide inputs to that of a flooded system is not known. Field experiments were conducted in 2007 and 2008 at Pine Tree, AR to evaluate different herbicide programs on the weed control efficacy and rice grain yield in furrow-irrigated and flooded rice production systems. Six herbicide programs were evaluated with and without additional late-season “as-needed” herbicide treatments. Minor injury to rice was noted for quinclorac plus propanil. However, the injury was transient and the plants fully recovered. Overall weed control was greater in the flooded system compared with the furrow-irrigated system (up to 20% greater), because flooding effectively prevented the emergence of most terrestrial weeds. In addition, rice grain yields were 13 to 14% greater in flooded compared with furrow-irrigated plots. Irrespective of the irrigation system, herbicide programs that contained a PRE-applied herbicide provided greater weed control and resulted in greater yield compared with those that did not contain PRE-applied herbicide, indicative of the importance of early-season weed control in achieving higher grain yields. On the basis of weed control, yield, and weed treatment cost, the herbicide program with clomazone PRE followed by propanil at four- to five-leaf rice was more efficient than other programs evaluated in both irrigation systems. However, furrow-irrigated plots required as-needed herbicide applications, which were applied after the four- to five-leaf rice stage when two or more plots within a program exhibited ≤ 80% control for any of the weed species. This suggests that furrow-irrigated rice production demands additional weed management efforts and thereby increases production costs. There is also a possibility for substantial yield reduction in the furrow-irrigated system compared with the flooded system. Nevertheless, furrow-irrigated rice production can still be a viable option under water-limiting situations and under certain topographic conditions.


2001 ◽  
Vol 91 (7) ◽  
pp. 708-716 ◽  
Author(s):  
N. D. Paveley ◽  
R. Sylvester-Bradley ◽  
R. K. Scott ◽  
J. Craigon ◽  
W. Day

A set of hypothetical steps has been defined, which links fungicide dose to marketable yield, whereby (i) increasing dose decreases symptom area, according to a dose-response curve, (ii) decreased symptom area increases crop green area index (GAI), (iii) increasing GAI increases fractional interception of photosynthetically active radiation, (iv) increased fractional interception increases crop dry matter accumulation, and (v) yield increases, depending on the partitioning of dry matter to the marketable fraction. One equation represented all five steps. By integrating this equation for light interception during the yield forming period and differentiating with respect to the ratio of fungicide cost over yield value, an analytical solution was obtained for the economic optimum dose. Taking published ranges of parameter values for the Septoria tritici wheat pathosystem as an example, yield-response curves and optimum doses were biologically plausible when compared with data from four field experiments. The analytical and empirical results imply that the dose required to optimize economic return will vary substantially between sites, seasons, and cultivars. Sensitivity analyses identified parameters describing specific facets of disease severity, fungicide efficacy, and assimilate partitioning as most influential in determining the dose optimum.


Sign in / Sign up

Export Citation Format

Share Document