scholarly journals Inhibitory Effect of Aqueous Extract of Moringa oleifera and Newbuoldia laevis Leaves on Ferrous Sulphate and Sodium Nitroprusside Induced Oxidative Stress in Rat’s Testes in Vitro

2012 ◽  
Vol 02 (04) ◽  
pp. 119-128 ◽  
Author(s):  
Seun F. Akomolafe ◽  
Ganiyu Oboh ◽  
Afolabi A. Akindahunsi ◽  
Ayodele J. Akinyemi ◽  
Olusola Adeyanju
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Seun F. Akomolafe ◽  
Ganiyu Oboh ◽  
Afolabi A. Akindahunsi ◽  
Ayodele J. Akinyemi ◽  
Oluwatosin G. Tade

Cissus populnea are plants associated with a myriad of medicinal uses in different parts of the world and are good sources of carotenoids, triterpenoids, and ascorbic acid. The antioxidant properties and inhibitory effect of water extractible phytochemicals from stem bark of C. populnea on FeSO4 and sodium nitroprusside- (SNP-) induced lipid peroxidation in rat testes were investigated in vitro. The results revealed that the extract was able to scavenge DPPH radical, chelate Fe2+ and also had a high reducing power. Furthermore, the incubation of the testes tissue homogenate in the presence of FeSO4 and SNP, respectively, caused a significant increase in the malondialdehyde (MDA) contents of the testes. However, the aqueous extract of the stem bark of C. populnea caused a significant decrease in the MDA contents of both Fe2+ (EC50 = 0.027 mg/mL) and SNP- (EC50 = 0.22 mg/mL) induced lipid peroxidation in the rat testes homogenates in a dose-dependent manner. The water extractible phytochemicals from C. populnea protect the testes from oxidative stress and this could be attributed to their high antioxidant activity: DPPH-scavenging ability, Fe2+-chelating and -reducing power. Therefore, oxidatively stress in testes could be potentially managed/prevented by this plant.


2021 ◽  

<p>The current study explores the capacities of Moringa oleifera (L), to overcome and/or tolerate oxidative stress induced by a saline substrate as a constraining factor. For this, Moringa seeds have been treated for 15 days after germination in vitro with increasing concentrations of NaCl, and specifically at 0 (control), 5; 7.5; 10; 12.5 and 15g l-1. Morpho-physiological and biochemical aspects were evaluated which were considered as probable indicators of tolerance or sensitivity to this stress. Our results reveal an increased synthesis of proline, lipids, proteins, CAT, GPX, APX, flavonoids, condensed tannins and a decrease in total polyphenols (-29.97%), mainly due to their high carbon cost. The state of degradation of the cell membranes was evaluated by the MDA assay, which increased by 91.25%. On the other hand, the evaluation of the oxidative damage caused by Reactive Oxidative Species (ROS) was detected by H2O2, which decreased by 37.89%. Additionally, our results revealed a disturbance of the germinative power of the seeds indicating moderate resistance to stress as it was manifested by the development of epicotyledonary axes, even under 15 g l-1 of NaCl without showing symptoms of stress or sensitivity. This result supports our hypothesis of the ability of the species to maintain or even improve its oxidative status.</p>


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1231
Author(s):  
Jin Woo Kim ◽  
Eun Hee Jo ◽  
Ji Eun Moon ◽  
Hanvit Cha ◽  
Moon Han Chang ◽  
...  

Various stresses derived from both internal and external oxidative environments lead to the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative damage and ultimately cell death. The objective of this study was to evaluate the protective effects of Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro and in vivo models.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhihong Lin ◽  
Danni Zhu ◽  
Yongqing Yan ◽  
Boyang Yu ◽  
Qiujuan Wang ◽  
...  

Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed ofPoria cocos(Chinese name:Fu Ling),Atractylodes macrocephala(Chinese name:Bai Zhu) andAngelica sinensis(Chinese names:Danggui, Dong quai, Donggui; Korean name:Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stressin vivoandin vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC5010.6%, ET501.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC502.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC503.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zofia Nizioł-Łukaszewska ◽  
Dominika Furman-Toczek ◽  
Tomasz Bujak ◽  
Tomasz Wasilewski ◽  
Zofia Hordyjewicz-Baran

The work attempts to obtain a multifunctional plant extract derived from Moringa tree leaves. Obtained results indicate a strong antioxidant potential of the tested extracts. It was shown that Moringa oleifera leaf extract is a rich source of flavonoid and phenolic compounds. Furthermore, it shows a strong antioxidant activity by scavenging free radicals. In vitro toxicity studies showed that the tested extracts in concentrations up to 5% showed a positive effect on cell proliferation and metabolism and may contribute to the reduction of oxidative stress in cells. It was noted that the tested model formulation of cosmetic (1% SCS) with the addition of different types of extracts might contribute to the reduction of skin irritation and improve the safety of the product.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4371
Author(s):  
Weronika Adach ◽  
Jerzy Żuchowski ◽  
Barbara Moniuszko-Szajwaj ◽  
Malgorzata Szumacher-Strabel ◽  
Anna Stochmal ◽  
...  

Background: The Paulownia Clone in Vitro 112, known as oxytree or oxygen tree, is a hybrid clone of the species Paulownia elongata and Paulownia fortunei (Paulowniaceae). The oxytree is a fast-growing hybrid cultivar that can adapt to wide variations in edaphic and climate conditions. In this work, Paulownia Clone in Vitro 112 leaves were separated into an extract and four fractions (A–D) differing in chemical content in order to investigate their chemical content using LC-MS analysis. The extract and fractions were also evaluated for their anticoagulant and antioxidant properties in a human plasma in vitro. Results: The Paulownia leaf extract contained mainly phenolic compounds (e.g., verbascoside), small amounts of iridoids (e.g., aucubin or 7-hydroxytometoside) and triterpenoids (e.g., maslinic acid) were also detected. Our results indicate that the extract and fractions have different effects on oxidative stress in human plasma treated with H2O2/Fe in vitro, which could be attributed to differences in their chemical content. For example, the extract and all the fractions, at the two highest concentrations of 10 and 50 µg/mL, significantly inhibited the plasma lipid peroxidation induced by H2O2/Fe. Fractions C and D, at all tested concentrations (1–50 µg/mL) were also found to protect plasma proteins against H2O2/Fe-induced carbonylation. The positive effects of fraction C and D were dependent on the dose. Conclusions: The extract and all four fractions, but particularly fractions C and D, which are rich in phenolic compounds, are novel sources of antioxidants, with an inhibitory effect on oxidative stress in human plasma in vitro. Additionally, the antioxidant potential of fraction D may be associated with triterpenoids.


Sign in / Sign up

Export Citation Format

Share Document