A New Optical Access for Medium Speed Large Bore Marine Engines under Full-Load Operating Conditions

2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Stephan Bernhard Karmann ◽  
Christian Kunkel ◽  
Maximilian Prager ◽  
Georg Wachtmeister
Author(s):  
Л.Б. Леонтьев ◽  
Н.П. Шапкин ◽  
А.Л. Леонтьев ◽  
В.Н. Макаров ◽  
А.В. Арон

Повышение долговечности трибосопряжений судовых дизелей, определяющих их ресурс, представляет собой актуальнейшую проблему, обусловленную как безопасностью мореплавания, так и экономическими факторами. Основной причиной отказов коленчатых валов двигателей, определяющих необходимость капитального ремонта, является износ шеек. Решение проблемы повышения износостойкости и, соответственно, долговечности связано с применением трибоактивных присадок в смазку. Несмотря на глубокие и обстоятельные исследования в области применения органо-неорганических материалов для использования в качестве присадок в моторное масло для повышения долговечности трибоузлов осуществить выбор оптимального материала для конкретных условий практически невозможно, так как исследования выполнены для различных условий эксплуатации и по различным методикам. Цель работы – разработка триботехнической присадки к моторным маслам, обеспечивающей повышение надежности и эффективности технической эксплуатации судовыхсреднеоборотных дизелей путем формирования тонкопленочного металлокерамического покрытия на поверхностях трения стальных деталей трибоузлов, позволяющего получить оптимальный комплекс параметров материала износостойкого покрытия. В работе представлены исследования эксплуатационных свойств присадок в моторное масло 17 органо-неорганических триботехнических материалов 4 групп — природные и искусственные полимеры, из которых были изготовлены свыше 20 композиций и композитов. Установлено, что наиболее перспективным является использование нанокомпозитов на основе вермикулита, модифицированного кислотой, в качестве присадок в моторное масло, так как они обладают минимальными коэффициентом трения при граничной смазке (0,007–0,014) а также высокой износостойкостью стали 40Х и обеспечивают минимальную величину скорости изнашивания вкладыша подшипника, благодаря чему повышается ресурс трибосопряжения более, чем в 3 раза, и соответственно снижаются эксплуатационные расходы. Increasing the durability of the tribo-couplings of marine diesel engines, which determine their resource, is an urgent problem due to both the safety of navigation and economic factors. The main reason for engine crankshafts failures, which determine the need for major repairs, is the wear of the necks. The solution to the problem of increasing wear resistance and, accordingly, durability is associated with the use of triboactive additives in the lubricant. Despite in-depth and thorough research in the field of application of organo-inorganic materials for use as additives in engine oil to increase the durability of tribo-nodes, it is almost impossible to choose the optimal material for specific conditions, since the studies were carried out for various operating conditions and according to various methods. The purpose of the work is to develop a tribotechnical additive to motor oils that provides an increase in the reliability and efficiency of technical operation of medium-speed marine diesel engines by forming a thin-film metal-ceramic coating on the friction surfaces of steel parts of tribo-nodes, which allows to obtain an optimal set of parameters of the wear-resistant coating material. The paper presents studies of the operational properties of additives in engine oil of 17 organo-inorganic tribotechnical materials of 4 groups — natural and artificial polymers, from which more than 20 compositions and composites were made. It has been established that the most promising is the use of nanocomposites based on vermiculite modified with acid as additives in engine oil, since they have a minimum coefficient of friction with boundary lubrication (0.007-0.014) as well as high wear resistance of 40X steel and provide a minimum wear rate of the bearing liner, thereby increasing the tribo-tension life by more than 3 times, and, accordingly, operating costs are reduced.


Author(s):  
E. Benvenuti ◽  
B. Innocenti ◽  
R. Modi

This paper outlines parameter selection criteria and major procedures used in the PGT 25 gas turbine power spool aerodynamic design; significant results of the shop full-load tests are also illustrated with reference to both overall performance and internal flow-field measurements. A major aero-design objective was established as that of achieving the highest overall performance levels possible with the matching to latest generation aero-derivative gas generators; therefore, high efficiencies were set as a target both for the design point and for a wide range of operating conditions, to optimize the turbine’s uses in mechanical drive applications. Furthermore, the design was developed to reach the performance targets in conjunction with the availability of a nominal shaft speed optimized for the direct drive of pipeline booster centrifugal compressors. The results of the full-load performance testing of the first unit, equipped with a General Electric LM 2500/30 gas generator, showed full attainment of the design objectives; a maximum overall thermal efficiency exceeding 37% at nominal rating and a wide operating flexibility with regard to both efficiency and power were demonstrated.


2012 ◽  
Vol 170-173 ◽  
pp. 3491-3494
Author(s):  
Ming Dong Chen ◽  
Ding Xuan Zhao

The boom with closed circuit in Hydraulic Excavators, which is made up of motor, hydraulic pump and accumulator, was put forward based on analysis of the operating condition of ordinary hydraulic excavators and mathematical models of system were built. Power characteristics of main power elements were obtained under typical operating conditions, and then the energy consumption characteristics were analyzed. The results show that the installed power and energy consumption will be reduced using boom with closed circuit, and no-load drop and full load rise of boom are the worst operating conditions.


2016 ◽  
Vol 6 (2) ◽  
pp. 32-39
Author(s):  
Hideyoshi Yamamoto ◽  
Shoji Kato ◽  
Shuichi Anzawa ◽  
Kazumi Imai

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Adam Klingbeil ◽  
Seunghyuck Hong ◽  
Roy J. Primus

Abstract Experiments were conducted on a large bore, medium speed, single cylinder, diesel engine to investigate operation with substitution ratio of natural gas (NG) varying from 0% to 93% by energy. In a previous study by the same group, these data were used to validate an analytical methodology for predicting performance and emissions under a broad spectrum of energy substitution ratios. For this paper, these experimental data are further analyzed to better understand the performance and combustion behavior under NG substitution ratios of 0%, 60%, and 93%. These results show that by transitioning from diesel-only to 60% dual-fuel (DF) (60% NG substitution ratio), an improvement in the NOx-efficiency trade-off was observed that represented a ∼3% improvement in indicated efficiency at constant NOx. Further, the transition from 60% DF to 93% DF (93% NG substitution ratio) resulted in additional efficiency improvement with a simultaneous reduction in NOx emissions. The data suggest that this improvement can be attributed to the premixed nature of the high substitution ratio case. Furthermore, the results show that high cycle-to-cycle variation was observed for some 93% DF combustion tests. Further analysis, along with diesel injection rate measurements, shows that the observed extreme sensitivity of the combustion event can be attributed to critical parameters such as diesel fuel quantity and injection timing. These results suggest a better understanding of the relative importance of combustion system components and operating conditions in controlling cycle-to-cycle variation of combustion process.


Lubricants ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 30 ◽  
Author(s):  
Hannes Allmaier ◽  
David E. Sander

The rotational dynamics and lubrication of the piston pin of a Gasoline engine are investigated in this work. The clearance plays an essential role for the lubrication and dynamics of the piston pin. To obtain a realistic clearance, as a first step, a thermoelastic simulation is conducted for the aluminum piston for the full-load firing operation by considering the heat flow from combustion into the piston top and suitable thermal boundary conditions for the piston rings, piston skirt, and piston void. The result from this thermoelastic simulation is a noncircular and strongly enlarged clearance. In the second step, the calculated temperature field of the piston and the piston-pin clearance are used in the simulation of the piston-pin journal bearings. For this journal bearing simulation, a highly advanced and extensively validated method is used that also realistically describes mixed lubrication. By using this approach, the piston-pin rotation and lubrication are investigated for several different operating conditions from part load to full load for different engine speeds. It is found that the piston pin rotates mostly at very slow rotational speeds and even changes its rotational direction between different operating conditions. Several influencing effects on this dynamic behaviour (e.g., clearance and pin surface roughness) are investigated to see how the lubrication of this crucial part can be improved.


Author(s):  
Oliver Lammel ◽  
Tim Rödiger ◽  
Michael Stöhr ◽  
Holger Ax ◽  
Peter Kutne ◽  
...  

In this contribution, comprehensive optical and laser based measurements in a generic multi-jet combustor at gas turbine relevant conditions are presented. The flame position and shape, flow field, temperatures and species concentrations of turbulent premixed natural gas and hydrogen flames were investigated in a high-pressure test rig with optical access. The needs of modern highly efficient gas turbine combustion systems, i.e., fuel flexibility, load flexibility with increased part load capability, and high turbine inlet temperatures, have to be addressed by novel or improved burner concepts. One promising design is the enhanced FLOX® burner, which can achieve low pollutant emissions in a very wide range of operating conditions. In principle, this kind of gas turbine combustor consists of several nozzles without swirl, which discharge axial high momentum jets through orifices arranged on a circle. The geometry provides a pronounced inner recirculation zone in the combustion chamber. Flame stabilization takes place in a shear layer around the jet flow, where fresh gas is mixed with hot exhaust gas. Flashback resistance is obtained through the absence of low velocity zones, which favors this concept for multi-fuel applications, e.g. fuels with medium to high hydrogen content. The understanding of flame stabilization mechanisms of jet flames for different fuels is the key to identify and control the main parameters in the design process of combustors based on an enhanced FLOX® burner concept. Both experimental analysis and numerical simulations can contribute and complement each other in this task. They need a detailed and relevant data base, with well-known boundary conditions. For this purpose, a high-pressure burner assembly was designed with a generic 3-nozzle combustor in a rectangular combustion chamber with optical access. The nozzles are linearly arranged in z direction to allow for jet-jet interaction of the middle jet. This line is off-centered in y direction to develop a distinct recirculation zone. This arrangement approximates a sector of a full FLOX® gas turbine burner. The experiments were conducted at a pressure of 8 bar with preheated and premixed natural gas/air and hydrogen/air flows and jet velocities of 120 m/s. For the visualization of the flame, OH* chemiluminescence imaging was performed. 1D laser Raman scattering was applied and evaluated on an average and single shot basis in order to simultaneously and quantitatively determine the major species concentrations, the mixture fraction and the temperature. Flow velocities were measured using particle image velocimetry at different section planes through the combustion chamber.


1973 ◽  
Vol 187 (1) ◽  
pp. 31-41
Author(s):  
R. Bertodo ◽  
S. Sivakumaran

The paper reviews an assessment of the factors affecting the reliability and durability of poppet valves of highly rated medium speed diesels burning standard or residual oils. Detailed analysis demonstrated that an undercut (tuliped) profile is preferable. Optimum dimensional proportions are derived. The valve behaviour under operating conditions was such as to suggest that it plays a passive part in the phenomenon of ‘valve sinkage’. The adoption of ‘differentially angled seats’ appears to have little meaning in practice. Cylinder head deflection was a governing feature of seat ‘guttering’. A review of material properties suggested that the often quoted Eichelberg quality factor is inadequate and an alternative parameter for assessing the suitability of materials is derived. All materials suitable for valve manufacture possess poor resistance to corrosion attack. A number of possible palliatives are examined.


2012 ◽  
Vol 151 (4) ◽  
pp. 72-76
Author(s):  
Leszek PIASECZNY ◽  
Mirosław WALKOWSKI

Injection Systems of Common Rail type are becoming widely used in marine engines. The aim of the research and development of these systems is to optimize the multi-injection process. The authors of the paper present the results of research on the fuel supply system of research common-rail marine medium-speed engine. The study was conducted for the nominal circulation engine speed. For the analysis were established three variants of fuel supply – a single dose, two-piece and three-piece The interdependence of measured injection parameters and their effect on engine operation have been presented in graphical form.


Author(s):  
G. R. Pucher ◽  
P. R. Underhill ◽  
W. D. Allan ◽  
G. Wang ◽  
S. Guy

Correct functioning of fuel nozzles is paramount to the efficient operation of gas turbine engines. Nozzles exhibiting poor distribution of droplets can be detrimental to combustion and overall engine life due to the creation of hot spots and potential for torching. The traditional technique of assessing nozzle performance involves operation in stagnant air conditions. Fuel spray is collected in the subdivided bins of a mechanical patternation system to determine spray symmetry. Recent improvements in spray analysis involve the use of laser light sheets to illuminate specific ‘slices’ of sprays in either cross sectional or axial planes. Typically, scattered light from the intersection of a laser sheet and a spray is recorded by a digital video camera, and images are averaged and corrected to determine the quality of the spray pattern. Such optical means of assessing spray quality provide great improvement over conventional means in terms of speed, convenience, and information retrieved. Nonetheless, data obtained in stagnant air conditions do not give an indication of spray geometry within combustion chambers under realistic operating conditions of airflow and combustion. This paper describes a project which applied laser-based optical patternation in a T-56 gas turbine combustion chamber rig with optical access under realistic flow conditions. As such, nozzle spray pattern was observed for various air and fuel flows in both cross sectional and plume (chamber axial) orientations. A deliberately damaged nozzle was also assessed for comparison with a good nozzle. Using optical filtration, spray patterns were observed under operationally representative combustion conditions.


Sign in / Sign up

Export Citation Format

Share Document