scholarly journals Flight Activities and Pollen Load of Lepidotrigona terminata Smith (Apidae: Meliponinae)

2020 ◽  
Vol 27 (2) ◽  
pp. 97
Author(s):  
Anggun Wicaksono ◽  
Tri Atmowidi ◽  
Windra Priawandiputra

Worker bees actively forage to supply colony necessity i.e., pollens, nectar, and resin. Flight activities of the worker bees are influenced by food availability and environmental conditions. This study aimed to measure flight activities of Lepidotrigona terminata in terms of leaving and returning to the nest (including carrying of pollen and pollen type) and their relation to environmental conditions. The observation of flight activities of L. terminata were conducted from August to December 2016, at 07.00-17.00 for 1 minute with 1 hour interval. Pollen load and pollen types were analyzed by the acetolysis method. Flight activities of leaving and returning to the nest were lower at 07.00-08.00 (1 individual/min) and at 16.00-17.00 (2 individuals/min). However, the peak activities occurred at 10.00 until 13.00 (8 and 6 individuals/min for leaving and returning to the nest, respectively). Temperature and light intensity were positively correlated with flight activities of bees that carried nectar and resin, as well as leaving the nest without garbage. The returned workers averagely carried 32,696 pollen grains from four pollen types. Based on selection index values, this stingless bee species mostly preferred Araceae (ⱳi=1.522) plant family for pollen resources to others, Anacardiaceae, Aceraceae, and Acanthaceae (x2=39.32, p<0.01).

Bothalia ◽  
1983 ◽  
Vol 14 (3/4) ◽  
pp. 849-856 ◽  
Author(s):  
M. L. Frean

Pollen grains of the Euphorbiaceae show a number of pollen types which can be clearly distinguished. Generally different genera are characterized by a specific pollen type.  Euphorbia obesa Hook. f. and Croton gratissimus Burch, subsp.  subgratissimus (Prain) Burtt Davy, represent two genera within the Crotonoideae with different morphology, each type characteristic for the respective genus. Taxonomically, the genus Euphorbia with apetalous flowers consisting of a naked pistil surrounded by several staminate flowers within a cyathium, is considered more advanced than the genus  Croton. In  Croton the inflorescence is a raceme with unisexual flowers. The floral whorls of the male show numerous anthers and both calyx and a showy corolla are present. Both genera are insect pollinated. In both  Euphorbia obesa and  Croton gratissimus the pollen wall in section shows columellae, a structure characteristic of angiosperms. However the present ontogenetic studies show that the formation of the columellae differs entirely in the two pollen types. The final stratification of the wall as well as the morphology of the grains differ and evaluation of the exine structure indicates that phylogenetically Croton pollen shows more advanced characters than  Euphorbia — contradicting the floral phylogeny. This study conducted at light and electron microscope level compares the two pollen types morphologically and ontogenetically, concentrating mainly on the formation of the exine which is tectate-perforate in the prolate tricolpate grain of Euphorbia obesa and semi-tectate in the anaperturate, spheroidal grain of Croton gratissimus. The aim of the study was to evaluate the significance of pollen characters in taxonomic and phylogenetic relationships within the Euphorbiaceae. The differing pollen morphology which is related to the taxonomic grouping of tribes within the subfamily (Crotonoideae) emphasizes diversity, which may result from physiological adaptation. The study shows that the same functional end may well be achieved in different ways and this may be a factor underlying the diversity in the heterogeneous family Euphorbiaceae.


1990 ◽  
Vol 68 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Johanne Parent ◽  
Pierre J. H. Richard

The pollen morphology of seven species, varieties and forms of Cupressaceae from eastern Canada and northeastern United States was studied by light microscopy, following acetolysis, to improve the identification of these taxa in Quaternary fossil sediments. Taxodium distichum (Taxodiaceae), which is also present in the study area, was included for comparison. Four pollen types were defined: Juniperus communis – Thuja occidentalis, Chamaecyparis thyoides, Juniperus horizontalis – Juniperus virginiana, and Taxodium distichum. Five shapes of pollen grains exist: whole, slightly split, opened in a "V" shape, spindlelike, or split in halves. All shapes are found in all species, in varying proportions, and represent different stages of hydration in Cupressaceae pollen type. The absence or presence of these shapes cannot be used as an identification criterion for the different species. A pollen identification key, applicable to fossil sediments and combining characters based on shape, size and other morphological features of acetolysed grains, is proposed and allows to differentiate all the species from one another, with the exception of Juniperus horizontalis and Juniperus virginiana.


Bonplandia ◽  
2001 ◽  
Vol 11 (1-4) ◽  
pp. 207 ◽  
Author(s):  
Stella M. Piré ◽  
Carmen L. Cristóbal

<p>Pollen grains of 41 species representing all seven sections of Helicteres were studied with light and scanning electron microscopy and described. In order to establish palynological affinities Neoregnellia cubensis, Kleinhovia hospita, Reevesia thyrsoidea, Veeresia clarkii, Ungeria floribunda and Pterospermum acerifolium were also examined. Helicteres is palynologically rather uniform with respect to the shape and size of the grains as well as the type and number of the apertures. The pollen grains are usually triporate, oblate or suboblate, amb triangular and medium sized. Nevertheless the exine surface shows great variability. Nine pollen types are recognized on the basis of the sculpture of the exine: Type 1, tectate-perforate, baculate, in sect. Helicteres; Type 11, tectate-perforate, psilate to weakly verrucate, in 4 species of sect. Orthocarpaea; Type 111, tectate-perforate, with the equatorial zone verrucate and the poles psilate, in sect. Stegogamos; Type IV, microreticulate, verrucate, in sect. Polyandria; Type V, tectate, scabrate, verrucate, in sect. Alicteres; Type VI, tectate-perforate, verrucate, in 2 species of sect. Orthocarpaeaand 4 species of sect. Orthothecium; Type VII, tectate-perforatefossulate, verrucate, the verrucae large, irregular in outline, often anastomosed, in 3 species of sect. Orthothecium; Type VIII, tectate to tectate-perforate-fossulate, perforations and fossulae as well as micro-verrugae and micro-echinae densely concentrated at the poles, the equatorial zone psilate or scabrate, in 3 species of sect. Orthothecium; Type IX, tectateperforate- fossulate, microechinate, the perforations and fossulae densely concentrated at the poles, the micro-echinae distributed throughout the surface but hardly differentiated on the poles, in 16 species of sect. Sacarolha and 5 species of sect. Orthothecium. The pollen types are ordered according to the complexity of the exine; with the types with uniform sculpture considered simpler and the types with polar and equatorial zones differentiated considered complex. Keys to identify the nine pollen types of Helicteres and the pollen types of related genera are presented. According to pollen morphology Neoregnellia is closely connected with Helicteres; this genus shares the same pollen type, IX, with sect. Sacarolha and some species of sect. Orthothecium. The pollens of Kleinhovia and Helicteres have many characters in common (shape, size, apertures), the only difference being the microreticulate surface of the former; they are rather close to each other. Reevesia thyrsoidea, Veeresia clarkii and Ungeria floribunda stand apart from Helicteres in having 3-5 brevi-colp(or)ate and suprareticulate grains. The very distinctive pollen of Pterospermum acerifolium (Iarge size, spheroidal, echinate) supports its segregation from the tribe Helictereae. In Helicteres the different patterns of exine sculpture have taxonomic and phylogenetic value. In the first place, they allow the recognition of the 4 monospecific sections (Helicteres, Stegogamos, Alicteres and Polyandria) and at the same time they reveal the coherence of the genus, since the other 3 sections which have many species (Orthocarpaea, Orthothecium and Sacarolha) are connected with each other not only by exomorphological characters but also by pollen characters. In the second place, they provide bases for interpreting infra-generic relationships and the possible origin of the genus.Two possible evolutionary trends of exine sculpture, which are representated in two diagrams, are proposed. The first possibility starts with the Type VI; from this pollen type the evolutionary trend would have diverged in several directions. On one side, a line would lead toward increasing complexity of the exine that would end in Type VIII. This kind of pollen grain would have given rise to Type IX. On the other side, several divergent lines might have taken place; modifications in the exine sculpture would have led toward a progressive simplicity that would culminate in the absence of sculptural elements of Type 11. From this kind of pollen grain Type I might have evolved. The second possibility starts from Type 11; in this case the evolutionary trend of the exine would have gone in only one direction; the exine would have acquired more and more complexity, giving rise to pollen types connected with each other by transitional forms.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Robert Brodschneider ◽  
Kristina Gratzer ◽  
Elfriede Kalcher-Sommersguter ◽  
Helmut Heigl ◽  
Waltraud Auer ◽  
...  

Abstract Austrian beekeepers participated in the “C.S.I. Pollen” study as citizen scientists and collected pollen from honey bee colonies in hive mounted traps every three weeks from April to September in 2014 and 2015 to uncover the seasonal availability of pollen sources for bees. 1622 pollen samples were collected and analysed using palynological light microscopy to the lowest taxonomic level possible. For 2014 and 2015 combined, 239 pollen types from more than 85 families were detected. ‘Various unknown’ species, Taraxacum-form and Plantago spp. were the pollen types collected by the majority of colonies (occurrence), whereas the most pollen grains collected were from Trifolium repens-form, Plantago spp. and Salix spp. (abundance). In spring, trees were found to be the most abundant pollen source, whereas in summer herbs dominated. On average, a colony collected pollen from 16.8 ± 4.7 (2014) and 15.0 ± 4.4 (2015) pollen types per sampling. Those numbers, however, vary between sampling dates and indicate a seasonal pattern. This is also supported by Simpson’s diversity index, which was on median 0.668. In both years, 50.0% of analysed pollen samples were partially (>50%) and 4.2% were highly monofloral (i.e. containing >90% of one pollen type). Prevalence of monofloral pollen samples peaked at the beginning and the end of the season, when pollen diversity was the lowest.


Biologia ◽  
2008 ◽  
Vol 63 (1) ◽  
Author(s):  
Ayşe Kaplan

AbstractThe Pollen morphology of 13 taxa 11 of which are endemics belonging to Paronychia Miller (Caryophyllaceae) viz., P. agryloba, P. angorensis, P. arabica subsp. euphratica, P. carica, P. cataonica, P. chinonea, P. condensata, P. davisii, P. dudleyi, P. galatica, P. kurdica subsp. kurdica, P. kurdica subsp. montis-munzur and P. mughlaei from Turkey has been investigated by light (LM) and scanning electron microscopy (SEM). LM observations show that pollen grains are usually radially symetrical, isopolar, pantoporate, polygonal (6-gonal) or polygonal-spheroidal. Tectum is psilate or punctate. Tectal surface sparsely-densely spinulose. The numbers of pores are between 6 and 12. On the basis of pollen sizes, P. davisii was the biggest pollen type (23.45 µm) and P. kurdica subsp. kurdica (16.2 µm) was the smallest pollen types. According to exine sculpturing, pollen size and spinule numbers per 1 µm2, three pollen types were distinguished.


2012 ◽  
Vol 60 (3) ◽  
pp. 200 ◽  
Author(s):  
Andrew H. Thornhill ◽  
Geoff S. Hope ◽  
Lyn A. Craven ◽  
Michael D. Crisp

Pollen morphology of 16 genera and 101 species from the Myrtaceae tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae was surveyed using scanning electron microscopy (SEM) and light microscopy (LM). The most common pollen type observed in these tribes was parasyncolpate with arcuate or angular colpi, and a rugulate exine pattern. There was little size variation in observed pollen, except for larger pollen in tribe Melaleuceae. All Metrosideros pollen grains had apocolpial islands, as well as all Callistemon species viewed by LM. Choricarpia of tribe Backhousieae had pollen with a distinctive exine pattern. Dicolporate pollen were observed in two tribes, Metrosidereae (Tepualia) and Syzygieae (Acmena), and may be of systematic value. The dicolporate grains of these two genera were also easily distinguishable from each other by using size and pollen side shape as diagnostic characters. Two pollen types were observed within the genus Melaleuca, and a number of pollen types were observed within the species-rich genus Syzygium.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
José Tasso Felix Guimarães ◽  
Luciano Costa ◽  
Daniela Cristina Zappi ◽  
Wilson Filgueira Batista Junior ◽  
Karen da Silva Lopes ◽  
...  

Abstract: Honey pollen samples of Melipona seminigra pernigraMoure & Kerr 1950 sampled between 2017 and 2019 from experimental apiaries installed in campo rupestre on canga (CRC) vegetation of the Serra dos Carajás aimed to evaluated seasonal floral availability of undisturbed and mining-influenced areas. Around one hundred pollen types were identified mainly belonging to Fabaceae, Myrtaceae and Euphorbiaceae (31, 6 and 5 species, respectively). Mining area presented the highest pollen richness, almost twice those identified in the undisturbed areas. 80% of the pollen types are rare with concentrations ≤ 2,000 pollen grains/10 g, while the remaining were the most abundant, frequent and the primary bee sources. These latter correspond mostly to native plants species such as Tapirira guianensis Aubl., Protium spp., Aparisthmium cordatum (A.Juss.) Baill., Mimosa acutistipula var. ferrea Barneby, Periandra mediterranea (Vell.) Taub., Miconia spp., Pleroma carajasense K.Rocha, Myrcia splendens (Sw.) DC., Serjania spp. and Solanum crinitum Lam. All pollen types were identified during both seasons, but higher concentration values are related to the dry period (June-September). The statistical analysis of the pollen data indicated that there was no significant difference between undisturbed and mining-influenced areas, since primary bee sources of this study are widespread used in revegetation of mined areas.


1987 ◽  
Vol 28 (3) ◽  
pp. 393-406 ◽  
Author(s):  
Patricia L. Fall

AbstractSurface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae-Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.


2017 ◽  
Vol 24 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Ebadi-Nahari Mostafa ◽  
Nikzat-Siahkolaee Sedigheh ◽  
Eftekharian Rosa

Pollen morphology of nine species representing four genera: Cephalaria Schrad, Dipsacus L., Pterocephalus Vaill. and Scabiosa L. of the family Dipsacaceae in Iran has been investigated by means of scanning electron microscopy (SEM). The results showed that pollen grains were triporate and tricolpate. The pollen type of Scabiosa rotata Bieb. (tri- and tetraporate) is the first report in the world. The sizes of pollen grains fall into the classification group magna (pollen grain diameter 50–100 μm). Pollen shapes vary from preoblate to prolate and their polar views were triangulate and lobate. The exine ornamentation varies from gemmate in S. rotata to spinulate in the rest studied species. Species of Scabiosa have been dispersed in UPGMA tree that this confirmed the previous studies about taxonomic problems and species complexity in this genus. These results show the transfer of the some Scabisoa species to Lomelosia Raf. based on palynological characters. Pollen morphology of the family is helpful at the generic and specific level.Bangladesh J. Plant Taxon. 24(2): 129–136, 2017 (December)


2017 ◽  
Vol 14 (24) ◽  
pp. 5693-5704 ◽  
Author(s):  
Gabriella M. Weiss ◽  
Eva Y. Pfannerstill ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
Marcel T. J. van der Meer

Abstract. Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.


Sign in / Sign up

Export Citation Format

Share Document