scholarly journals State-of-the-art on monolingual lexicography for Croatia (Croatian)

Author(s):  
Kristina Štrkalj Despot ◽  
Lana Hudeček ◽  
Tomislav Stojanov ◽  
Nikola Ljubešić

In this minireview, the state of the art of the Croatian monolingual lexicography is presented. A brief overview and classification of all existing lexicographic resources is provided in the firts part of the minireview, followed by somewhat more detailed insight into the existing Croatian monolingual dictionaries and monolingual lexicographic projects, orthography dictionaries, and dictionary writing systems used.

2021 ◽  
Vol 54 (7) ◽  
pp. 1-39
Author(s):  
Ankur Lohachab ◽  
Saurabh Garg ◽  
Byeong Kang ◽  
Muhammad Bilal Amin ◽  
Junmin Lee ◽  
...  

Unprecedented attention towards blockchain technology is serving as a game-changer in fostering the development of blockchain-enabled distinctive frameworks. However, fragmentation unleashed by its underlying concepts hinders different stakeholders from effectively utilizing blockchain-supported services, resulting in the obstruction of its wide-scale adoption. To explore synergies among the isolated frameworks requires comprehensively studying inter-blockchain communication approaches. These approaches broadly come under the umbrella of Blockchain Interoperability (BI) notion, as it can facilitate a novel paradigm of an integrated blockchain ecosystem that connects state-of-the-art disparate blockchains. Currently, there is a lack of studies that comprehensively review BI, which works as a stumbling block in its development. Therefore, this article aims to articulate potential of BI by reviewing it from diverse perspectives. Beginning with a glance of blockchain architecture fundamentals, this article discusses its associated platforms, taxonomy, and consensus mechanisms. Subsequently, it argues about BI’s requirement by exemplifying its potential opportunities and application areas. Concerning BI, an architecture seems to be a missing link. Hence, this article introduces a layered architecture for the effective development of protocols and methods for interoperable blockchains. Furthermore, this article proposes an in-depth BI research taxonomy and provides an insight into the state-of-the-art projects. Finally, it determines possible open challenges and future research in the domain.


2020 ◽  
pp. 1-31
Author(s):  
Ilia Markov ◽  
Vivi Nastase ◽  
Carlo Strapparava

Abstract Native language identification (NLI)—the task of automatically identifying the native language (L1) of persons based on their writings in the second language (L2)—is based on the hypothesis that characteristics of L1 will surface and interfere in the production of texts in L2 to the extent that L1 is identifiable. We present an in-depth investigation of features that model a variety of linguistic phenomena potentially involved in native language interference in the context of the NLI task: the languages’ structuring of information through punctuation usage, emotion expression in language, and similarities of form with the L1 vocabulary through the use of anglicized words, cognates, and other misspellings. The results of experiments with different combinations of features in a variety of settings allow us to quantify the native language interference value of these linguistic phenomena and show how robust they are in cross-corpus experiments and with respect to proficiency in L2. These experiments provide a deeper insight into the NLI task, showing how native language interference explains the gap between baseline, corpus-independent features, and the state of the art that relies on features/representations that cover (indiscriminately) a variety of linguistic phenomena.


2021 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ahmed Fatimi

There are a variety of hydrogel-based bioinks commonly used in three-dimensional bioprinting. In this study, in the form of patent analysis, the state of the art has been reviewed by introducing what has been patented in relation to hydrogel-based bioinks. Furthermore, a detailed analysis of the patentability of the used hydrogels, their preparation methods and their formulations, as well as the 3D bioprinting process using hydrogels, have been provided by determining publication years, jurisdictions, inventors, applicants, owners, and classifications. The classification of patents reveals that most inventions intended for hydrogels used as materials for prostheses or for coating prostheses are characterized by their function or properties Knowledge clusters and expert driving factors show that biomaterials, tissue engineering, and biofabrication research is concentrated in the most patents.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1459 ◽  
Author(s):  
Tamás Czimmermann ◽  
Gastone Ciuti ◽  
Mario Milazzo ◽  
Marcello Chiurazzi ◽  
Stefano Roccella ◽  
...  

This paper reviews automated visual-based defect detection approaches applicable to various materials, such as metals, ceramics and textiles. In the first part of the paper, we present a general taxonomy of the different defects that fall in two classes: visible (e.g., scratches, shape error, etc.) and palpable (e.g., crack, bump, etc.) defects. Then, we describe artificial visual processing techniques that are aimed at understanding of the captured scenery in a mathematical/logical way. We continue with a survey of textural defect detection based on statistical, structural and other approaches. Finally, we report the state of the art for approaching the detection and classification of defects through supervised and non-supervised classifiers and deep learning.


Semiotica ◽  
2019 ◽  
Vol 2019 (228) ◽  
pp. 223-235
Author(s):  
Winfried Nöth

AbstractThe paper begins with a survey of the state of the art in multimodal research, an international trend in applied semiotics, linguistics, and media studies, and goes on to compare its approach to verbal and nonverbal signs to Charles S. Peirce’s approach to signs and their classification. The author introduces the concept of transmodality to characterize the way in which Peirce’s classification of signs reflects the modes of multimodality research and argues that Peirce’s classification of the signs takes modes and modalities in two different respects into consideration, (1) from the perspective of the sign and (2) from the one of its interpretant. While current research in multimodality has its focus on the (external) sign in a communicative process, Peirce considers additionally the multimodality of the interpretants, i.e., the mental icons and indexical scenarios evoked in the interpreters’ minds. The paper illustrates and comments on the Peircean method of studying the multi and transmodality of signs in an analysis of Peirce’s close reading of Luke 19:30 in MS 599, Reason’s Rules, of c. 1902. As a sign, this text is “monomodal” insofar as it consists of printed words only. The study shows in which respects the interpretants of this text evince trans and multimodality.


2020 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Atif Mehmood ◽  
Muazzam Maqsood ◽  
Muzaffar Bashir ◽  
Yang Shuyuan

Alzheimer’s disease (AD) may cause damage to the memory cells permanently, which results in the form of dementia. The diagnosis of Alzheimer’s disease at an early stage is a problematic task for researchers. For this, machine learning and deep convolutional neural network (CNN) based approaches are readily available to solve various problems related to brain image data analysis. In clinical research, magnetic resonance imaging (MRI) is used to diagnose AD. For accurate classification of dementia stages, we need highly discriminative features obtained from MRI images. Recently advanced deep CNN-based models successfully proved their accuracy. However, due to a smaller number of image samples available in the datasets, there exist problems of over-fitting hindering the performance of deep learning approaches. In this research, we developed a Siamese convolutional neural network (SCNN) model inspired by VGG-16 (also called Oxford Net) to classify dementia stages. In our approach, we extend the insufficient and imbalanced data by using augmentation approaches. Experiments are performed on a publicly available dataset open access series of imaging studies (OASIS), by using the proposed approach, an excellent test accuracy of 99.05% is achieved for the classification of dementia stages. We compared our model with the state-of-the-art models and discovered that the proposed model outperformed the state-of-the-art models in terms of performance, efficiency, and accuracy.


2020 ◽  
Vol 10 (14) ◽  
pp. 4791 ◽  
Author(s):  
Pedro Narváez ◽  
Steven Gutierrez ◽  
Winston S. Percybrooks

A system for the automatic classification of cardiac sounds can be of great help for doctors in the diagnosis of cardiac diseases. Generally speaking, the main stages of such systems are (i) the pre-processing of the heart sound signal, (ii) the segmentation of the cardiac cycles, (iii) feature extraction and (iv) classification. In this paper, we propose methods for each of these stages. The modified empirical wavelet transform (EWT) and the normalized Shannon average energy are used in pre-processing and automatic segmentation to identify the systolic and diastolic intervals in a heart sound recording; then, six power characteristics are extracted (three for the systole and three for the diastole)—the motivation behind using power features is to achieve a low computational cost to facilitate eventual real-time implementations. Finally, different models of machine learning (support vector machine (SVM), k-nearest neighbor (KNN), random forest and multilayer perceptron) are used to determine the classifier with the best performance. The automatic segmentation method was tested with the heart sounds from the Pascal Challenge database. The results indicated an error (computed as the sum of the differences between manual segmentation labels from the database and the segmentation labels obtained by the proposed algorithm) of 843,440.8 for dataset A and 17,074.1 for dataset B, which are better values than those reported with the state-of-the-art methods. For automatic classification, 805 sample recordings from different databases were used. The best accuracy result was 99.26% using the KNN classifier, with a specificity of 100% and a sensitivity of 98.57%. These results compare favorably with similar works using the state-of-the-art methods.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 480 ◽  
Author(s):  
Andrea Ballo ◽  
Alfio Dario Grasso ◽  
Gaetano Palumbo

With the aim of providing designer guidelines for choosing the most suitable solution, according to the given design specifications, in this paper a review of charge pump (CP) topologies for the power management of Internet of Things (IoT) nodes is presented. Power management of IoT nodes represents a challenging task, especially when the output of the energy harvester is in the order of few hundreds of millivolts. In these applications, the power management section can be profitably implemented, exploiting CPs. Indeed, presently, many different CP topologies have been presented in literature. Finally, a data-driven comparison is also provided, allowing for quantitative insight into the state-of-the-art of integrated CPs.


Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.


Sign in / Sign up

Export Citation Format

Share Document