In vitro Activity of Selected Ethiopian Medicinal Plants against Mycobacterium bovis and Mycobacterium tuberculosis

2021 ◽  
Vol 36 (2) ◽  
pp. 131-140
Author(s):  
Liya Woldetensay ◽  
Kaleab Asres ◽  
Gobena Ameni ◽  
Workineh Shibeshi

Tuberculosis is a major global public health problem causing ill-health in millions of the world’s population. The emergence of drug  resistant strains is a major challenge to the tuberculosis control programme. Hence, there is an urgent need for the development of new drugs. Herbs could be potential source of novel antituberculosis drugs due to their special attribute as a large source of therapeutic  phytochemicals. The objective of this study was to investigate the in vitro antimycobacterial activity of the 80% methanol extracts of  Erythrina brucei stem bark, Euphorbia candelabrum latex, Otostegia integrifolia leaf, Rumex abyssinicus root, and the chloroform extract of Vernonia amygdalina leaf on in vitro cultures of strains of Mycobactrium bovis and Mycobactrium tuberculosis. The extracts were obtained through cold maceration and soxhlet extraction, and essential oil was obtained by hydrodistillation. Macrodilution technique was used for determining the minimum inhibitory concentration (MIC) values. The MIC of the chloroform extract of V. amygdalina was 10 mg/ml against the mycobacterial strains tested. The 80% methanol extracts of E. brucei, O. integrifolia and R. abyssinicus were effective against M. bovis only with MIC ranging from 12.50 - 25.00 mg/ml. The oil from O. integrifolia was not active against the tested strains. E. candelabrum and oil from O. integrifolia failed to show antimycobacterial activity. In conclusion, the leaf  extract of V. amygdalina is proven to be the most active plant that could be a potential source for antimycobacterial agents for human and bovine tuberculosis. Erythrina brucei, O. integrifolia and R. abyssinicus displayed good antimycobacterial activity against M. bovis suggesting their potential to be sources of new compounds for bovine tuberculosis.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mohamed Eddouks ◽  
Debprasad Chattopadhyay ◽  
Naoufel Ali Zeggwagh

Plants have been historically used for diabetes treatment and related anti-inflammatory activity throughout the world; few of them have been validated by scientific criteria. Recently, a large diversity of animal models has been developed for better understanding the pathogenesis of diabetes mellitus and its underlying inflammatory mechanism and new drugs have been introduced in the market to treat this disease. The aim of this work is to review the available animal models of diabetes and anti-inflammatory activity along with somein vitromodels which have been used as tools to investigate the mechanism of action of drugs with potential antidiabetic properties and related anti-inflammatory mechanism. At present, the rigorous procedures for evaluation of conventional antidiabetic medicines have rarely been applied to test raw plant materials used as traditional treatments for diabetes; and natural products, mainly derived from plants, have been tested in chemically induced diabetes model. This paper contributes to design new strategies for the development of novel antidiabetic drugs and its related inflammatory activity in order to treat this serious condition which represents a global public health problem.


2019 ◽  
Vol 19 (8) ◽  
pp. 567-578 ◽  
Author(s):  
Marcus Vinicius Nora de Souza ◽  
Thais Cristina Mendonça Nogueira

Nowadays, tuberculosis (TB) is an important global public health problem, being responsible for millions of TB-related deaths worldwide. Due to the increased number of cases and resistance of Mycobacterium tuberculosis to all drugs used for the treatment of this disease, we desperately need new drugs and strategies that could reduce treatment time with fewer side effects, reduced cost and highly active drugs against resistant strains and latent disease. Considering that, 4H-1,3-benzothiazin-4-one is a promising class of antimycobacterial agents in special against TB-resistant strains being the aim of this review the discussion of different aspects of this chemical class such as synthesis, mechanism of action, medicinal chemistry and combination with other drugs.


2021 ◽  
Vol 16 (7) ◽  
pp. 15-22
Author(s):  
Paul Giftson ◽  
Jerrine Joseph ◽  
Revathy Kalyanasundaram ◽  
V. Ramesh Kumar ◽  
Wilson Aruni

Tuberculosis (TB) is a communicable disease and remains one of the top 10 causes of death worldwide. One fourth of the world population is infected with TB at a risk of developing disease. The increase in the incidence of drug resistant TB around the world urges the need to develop a new candidate to fight against the disease. Plants were considered as the rich source of bioactive components to be used as potential drugs. Medicinal plants are used in pure as well as crude materials for their medicinal properties. Our research aims in identifying the phyto-molecules which have anti- tuberculosis property. Four medicinal plants namely, Acalyphaciliata (Kuppaimeni), Solanumtrilobatum (Thuthuvalai), Momordicacharantia (Bitter Gourd) and Sennaauriculata (Avaram) were chosen to evaluate their antimicrobial activity focusing on anti-tubercular activity. The methanol extracts of the medicinal plants showed significant inhibitory activity against bacterial and fungal pathogens. Sennaauriculata methanol extracts showed activity against S. aureus, E. coli, P. aeruginosa and C. albicans. In the screening of antimycobacterial activity done by LRP assay, among the plant extracts tested, the hexane crude extracts of Momordicacharantia (Bitter Gourd) showed 82.2% and 81.03% of inhibition against M. tuberculosis H37Rv at 500µg/ml and 250µg/ml concentration respectively. Similarly, the methanol crude extracts of Momordicacharantia showed 87.14% and 63.55% of inhibition at 500µg/ml and 250µg/ml concentration respectively.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 191-197 ◽  
Author(s):  
Birkan Açıkgöz ◽  
İskender Karaltı ◽  
Melike Ersöz ◽  
Zeynep M. Coşkun ◽  
Gülşah Çobanoğlu ◽  
...  

The present study explores the antimicrobial activity and cytotoxic effects in culture assays of two fruticose soil lichens, Cladonia rangiformis Hoffm. and Cladonia convoluta (Lamkey) Cout., to contribute to possible pharmacological uses of lichens. In vitro antimicrobial activities of methanol and chloroform extracts against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus), and the yeast Candida albicans were examined using the paper disc method and through determination of minimal inhibitory concentrations (MICs). The data showed the presence of antibiotic substances in the chloroform and the methanol extracts of the lichen species. The chloroform extracts exhibited more signifi cant antimicrobial activity than the methanol extracts. However, a higher antifungal activity was noted in the methanol extract of C. rangiformis. The maximum antimicrobial activity was recorded for the chloroform extract of C. convoluta against E. coli. The cytotoxic effects of the lichen extracts on human breast cancer MCF-7 cells were evaluated by the trypan blue assay yielding IC50 values of ca. 173 and 167 μg/ml for the extracts from C. rangiformis and C. convoluta, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
M. O. Falade ◽  
D. O. Akinboye ◽  
G. O. Gbotosho ◽  
E. O. Ajaiyeoba ◽  
T. C. Happi ◽  
...  

Drug resistance inPlasmodium falciparumrequires that new drugs must be developed. Plants are a potential source for drug discovery and development. Two plants that used to treat febrile illnesses in Nigeria were tested forin vitroandin vivoantimalarial activity and cytotoxicity in cancer cell lines. Methanol, hexane, and ethyl acetate leaf extracts ofFicus thonningiiandLophira alatawere active inin vitroassays againstP. falciparumNF54 (sensitive) and K1 (multiresistant) strains. Hexane extracts ofF. thonningiiandL. alatawere the most effective extracts inin vitroassays with IC50of2.7±1.6 μg/mL and2.5±0.3 μg/mL for NF54 and10.4±1.6 μg/mL and2.5±2.1 μg/mL for K1 strain. All extracts were nontoxic in cytotoxicity assays against KB human cell line with IC50of over 20 μg/mL, demonstrating selectivity againstP. falciparum.In vivoanalysis shows that hexane extracts of both plants reduced parasitaemia. At the maximum dose tested,L. alatahad a 74.4% reduction of parasitaemia whileF. thonningiihad a reduction of 84.5%, both extracts prolonged animal survival in mice infected withP. bergheiNK65 when compared with vehicle treated controls. The antiplasmodial activity observed justifies the use of both plants in treating febrile conditions.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Suzane Olachea Allend ◽  
Lisiane Volcão ◽  
Carolina da Silva Canielles ◽  
Israel Barbosa ◽  
Dara Biatobock ◽  
...  

Abstract Natural products have been touted as important tools because of their vast potential for the development of compounds with antimicrobial activity and the possible inhibitory activity and/or adjuvant resistance mechanisms. Propolis has been empirically used for many years for the treatment of diseases, mainly due to its antioxidant, anti inflammatory and antimicrobial activities. This study aimed to evaluate the in vitro antimycobacterial activity of the ethanol extract of propolis alone and in combination with rifampicin (RIF), amikacin (AMI) and ciprofloxacin (CIP). The ethanol extract of propolis showed antibacterial activity against Mycobacterium chelonae and M. kansasii and was capable of increasing AMI, RIF and CIP activity in combination. On the other hand, compared to M. absecessus, M. fortuitum and M. avium, the extract was not active at 200 µg/mL and did not show pronounced adjuvant capacity when evaluated in association with the drugs. Based on these results, it can be concluded that the ethanol extract of propolis could be an alternative in the development of new drugs and can be used complementary with the current mycobacteriosis treatment.


2017 ◽  
Vol 43 (4) ◽  
pp. 1663-1672 ◽  
Author(s):  
Lian Tang ◽  
Yiran Yin ◽  
Juncai Liu ◽  
Zhong Li ◽  
Xiaobo Lu

Background/Aims: With the aging population increases, senile osteoporosis has become a global public health problem. Previous evidence has shown that miR-124 has important effects on the occurrence and development of osteoporosis. However, the role of miR-124 in the process of osteoclastogenesis is still obscure. Methods: First of all, we measured the expression level of miR-124 in bone marrow monocytes (BMMs) of osteoporotic mice (ovariectomized mice: OVX). Next, we evaluated the alteration of miR-124 during osteoclast differentiation of BMMs. Then, BMMs were transfected with miR-124 mimics or inhibitors to explore the influences of miR-124 on osteoclast differentiation of BMMs in vitro. Furthermore, bioinformatics analysis and luciferase reporter assay were performed for prediction and identification of the target of miR-124. Results: BMMs from OVX mice exhibited lower expression of miR-124 compared with Sham mice. Additionally, miR-124 was down-regulated when BMMs differentiated into osteoclasts. In addition, inhibition of miR-124 promoted BMMs differentiated into osteoclasts in vitro, whereas overexpression of miR-124 attenuated this procedure, demonstrated by increased expression of osteoclast specific genes and TRAP staining. Furthermore, Rab27a was confirmed to be the direct target of miR-124 by bioinformatics, Western blot and luciferase reporter assay analysis. Conclusion: Our findings revealed that miR-124 has an important role in osteoclastogenesis via targeting Rab27a. Thus, targeting miR-124 promises a therapeutic potential in the treatment of osteoporosis.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
João S. B. da Luz ◽  
Erwelly B. de Oliveira ◽  
Monica C. B. Martins ◽  
Nicácio H. da Silva ◽  
Luiz C. Alves ◽  
...  

Leishmaniasis is considered by the World Health Organization as one of the infectious parasitic diseases endemic of great relevance and a global public health problem. Pentavalent antimonials used for treatment of this disease are limited and new phytochemicals emerge as an alternative to existing treatments, due to the low toxicity and cost reduction. Usnic acid is uniquely found in lichens and is especially abundant in genera such asAlectoria,Cladonia,Evernia,Lecanora,Ramalina,andUsnea. Usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory, and analgesic activity. The aim of this study was to evaluate the antileishmanial activity of usnic acid onLeishmania infantum chagasipromastigotes and the occurrence of drug-induced ultrastructural damage in the parasite. Usnic acid was effective against the promastigote forms (IC50= 18.30 ± 2.00 µg/mL). Structural and ultrastructural aspects of parasite were analyzed. Morphological alterations were observed as blebs in cell membrane and shapes given off, increasing the number of cytoplasmic vacuoles, and cellular and mitochondrial swelling, with loss of cell polarity. We concluded that the usnic acid presented antileishmanial activity against promastigote forms ofLeishmania infantum chagasiand structural and ultrastructural analysis reinforces its cytotoxicity. Further,in vitrostudies are warranted to further evaluate this potential.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 897
Author(s):  
Fabricio Ledezma-Gallegos ◽  
Rafael Jurado ◽  
Roser Mir ◽  
Luis Alberto Medina ◽  
Laura Mondragon-Fuentes ◽  
...  

Cervical cancer is usually diagnosed in the later stages despite many campaigns for early detection and continues to be a major public health problem. The standard treatment is cisplatin-based chemotherapy plus radiotherapy, but patient response is far from ideal. In the research for new drugs that enhance the activity of cisplatin, different therapeutic agents have been tested, among them the antiprogestin mifepristone. Nevertheless, the efficacy of cisplatin is limited by its low specificity for tumor tissue, which causes severe side effects. Additionally, cervical tumors often become drug resistant. These problems could possibly be addressed by the use of liposome nanoparticles to encapsulate drugs and deliver them to the target. The aim of this study was to prepare liposome nanoparticles that co-encapsulate cisplatin and mifepristone, evaluate their cytotoxicity against HeLa cells and in vivo with subcutaneous inoculations of xenografts in nu/nu mice, and examine some plausible mechanisms of action. The liposomes were elaborated by the reverse-phase method and characterized by physicochemical tests. The nanoparticles had a mean particle size of 109 ± 5.4 nm and a Zeta potential of −38.7 ± 1.2 mV, the latter parameter indicating a stable formulation. These drug-loaded liposomes significantly decreased cell viability in vitro and tumor size in vivo, without generating systemic toxicity in the animals. There was evidence of cell cycle arrest and increased apoptosis. The promising results with the co-encapsulation of cisplatin/mifepristone warrant further research.


2021 ◽  
Vol 14 (1) ◽  
pp. 363-366
Author(s):  
Yuchen Xiao ◽  
Jianping Yong ◽  
Yang Yang ◽  
Canzhong Lu

Cancer is a major public health problem worldwide, and it is one of the top three major diseases in terms of mortality. Some small molecular synthesized drugs have been used clinically. However, much side-effects were also appeared during treatment of the cancer patients with the synthesized anticancer drugs in clinical. Some Chinese Traditional Plant Medicines have ever been used for treatment of cancer with the low side-effects. Thus, it is essential to find anticancer drugs or drug candidates from Chinese Traditional Plant Medicines. Podocarpus nagicontains different kinds of biological components together with a wide spectrum of biological activities, and it has ever been used in the folk of Yao Nationality for treatment different diseases. It is essential to study this folk plant medicine to discover new drugs or drug candidates. In this work, we obtained different polar extractions and evaluated their in vitro anticancer activity.


Sign in / Sign up

Export Citation Format

Share Document