scholarly journals Assessment of Timber Resource Exploitation in Shasha Forest Reserve, Osun State, Nigeria: Implication for Sustainable Forestry

2021 ◽  
Vol 25 (8) ◽  
pp. 1355-1359
Author(s):  
B.L. Olajiire-Ajayi ◽  
D.A. Adenuga ◽  
B.T. Olatunji ◽  
O.O. Abegunrin ◽  
A.S. Adebayo ◽  
...  

Records on rate of timber exploitation are very essential for sustainable forestry. They help in managing the forest sustainably. Therefore, the study collected and analysed data on rate of timber exploitation in Shasha forest reserve in Osun state. Logs arranged and set to be taken out of the forest were identified and measured every Monday between December, 2017 and June, 2018 for twenty-eight (28) weeks. The species and families of logs encountered were identified. A total of 13,944 logs were assessed. Fifteen (15) families belonging to twenty-one (21) species of logs were identified. Result revealed that Sterculiaceae family with five species was the most exploited. Ricinodendron heudelotti has the highest number of exploited logs with overall frequency of 27.71%. Ricinodendron heudelotti had the highest basal area and volume with values of 18018776.71cm² and 113289.36cm³ respectively. The study concludes that the population of Ricinodendron heudelotii tree was high in Shasha forest which made it available for extraction at high rate. The study recommends strict monitoring and enforcement of sustainable forestry laws with regular inventory and up-to-date inventory of timber exploitation rate from the reserve.

1999 ◽  
Vol 64 ◽  
Author(s):  
D. Van den Meersschaut ◽  
B. De Cuyper ◽  
K. Vandekerkhove ◽  
N. Lust

Natural  stand changes in the forest reserve of Liedekerke were analysed during the  period    1986-1996, using a permanent grid of circular plots. The monitoring  concentrated on natural    changes in species composition, using stem number and basal area as  indicators, and changes    in spatial distribution and colonization capacities of trees and shrubs,  with special interest in the    competition between exotic and indigenous species. After only a decade of  monitoring important    natural changes in the woody layer were detected. The pioneer forest is  gradually maturing    through self-thinning processes and shifts in species composition. The  overall stem number    decreased with 33.6%, while the basal area increased with 20.9%. Birch (Betula pendula/    pubescens) and indigenous oak (Quercus robur/petraea) remained  dominant. More tolerant    exotic species, like red oak (Quercus rubra) and sweet chestnut (Castanea  sativa), are slowly    increasing their share in the species composition and expanding their  range. Pioneer species on    the other hand, like aspen (Populus tremula), willow (Salix  capreaicinerealaurita), alder buckthorn    (Frangula alnus) and  common (Alnus glutinosa)  and grey alder (A. incana),  strongly declined.    Black cherry (Prunus serotina) seems to be slowly invading the forest due to its  massive    natural regeneration. Strong competition may be expected especially from  rowan ash (Sorbus    aucuparia), which showed similar regeneration  and colonization capacities. Elder (Sambucus    nigra) dramatically extented its range, though  its share remains marginal. Beech remained absent    most probably due to the lack of mature trees in the vacinity of the  forest. Finally this    change detection allowed that general predictions could be made on the  future natural development    and composition of this forest reserve, which could serve forest management  decisions.


1991 ◽  
Vol 7 (4) ◽  
pp. 491-502 ◽  
Author(s):  
P. Greig-Smith

ABSTRACTAll woody growth was enumerated in three transects, each 960 m x 20 m, in derived savanna in the Olokemeji Forest Reserve in south-west Nigeria. The data for species density, species basal area and stem girth classes were analysed by nested-block analysis of variance and covariance. The use of ‘total covariance’, the sum of all covariances at a block size, contributes to understanding of the pattern present.Three scales of pattern were evident. Patchiness at 160–320 m is interpreted as a response to soil differences or to the pattern of previous farming, which may itself have been determined by soil differences. Patchiness at 20–40 m is attributable to varying intensity of burning. At the smallest scale, of 10 m, there is evidence of regularity of distribution resulting from interference between individuals, possibly due to competition for water.


2017 ◽  
pp. 31-54
Author(s):  
Martin Bobinac ◽  
Sinisa Andrasev ◽  
Andrijana Bauer-Zivkovic ◽  
Nikola Susic

The paper studies the effects of two heavy selection thinnings on the increment of Norway spruce trees exposed to ice and snow breaks in eastern Serbia. In a thinning that was carried out at 32 years of age, 556 candidates per hectare were selected for tending, and at the age of 40, of the initial candidates, 311 trees per hectare (55.9%) were selected as future trees. In all trees at 41-50 age period, diameter increment was higher by 31%, basal area increment by 64% and volume increment by 67% compared to 32-40 age period. The collective of indifferent trees is significantly falling behind compared to future trees in terms of increment values in both observed periods. However, the value of diameter, basal area and volume increments, of the collective of "comparable" indifferent trees are lower in comparison to the values of increments of future trees by 10-15% in the 32-40 age period, and by 15-21% in the 41-50 age period and there are no significant differences. The results show that heavy selective thinnings, initially directed at a larger number of candidates for tending at stand age that does not differ much from the period of carrying out first "commercial" thinnings, improve the growth potential of future and indifferent trees, where it is rational to do the tree replacement for the final crop in "susceptible" growth stage to snow and ice breaks.


2021 ◽  
Vol 25 (3) ◽  
pp. 445-449
Author(s):  
B.M. Awosusi ◽  
I.S. Adamu ◽  
A.R. Orunkoyi ◽  
D.O. Atiba ◽  
A.A. Obe ◽  
...  

This study was carried out to assess the concentration levels of CO2 and temperature and also to correlate their values among selected locations in Oyo State, Nigeria. CO2 and temperature readings were taken using a portable CO2 meter, and a GPS was use to capture co-ordinates of sample points, this was done twice a day. Data were collected from 7am to 11am for morning session while afternoon session data were collected between 1pm and  5pm making a total of 8 hours monitoring. There were negative correlation between CO2 and temperature in all the forests while we have positive correlation between CO2 and temperature in non-forested domains, this,  by implication, means that presence of trees in the forest reserve help to reduce Carbon dioxide during the day since trees  manufacture their food using CO2 in the presence of sunlight. Also, the positive correlation between CO2 and temperature in the towns is due to high rate of human anthropogenic activities during the day. The values of CO2 obtained in this study were higher when  compared with IPCC limit of 435 ppm (parts per million) of CO2 emission. Routine monitoring of carbon dioxide and public education is recommended. Keywords: Carbon dioxide, Temperature, Forest, Non-Forest, Forest Reserve


1997 ◽  
Vol 21 (4) ◽  
pp. 168-174
Author(s):  
Michael G. Shelton ◽  
Paul A. Murphy

Abstract Growth was monitored for 4 yr in a thinned stand in southern Arkansas with three pine basal areas (70, 85, and 100 ft2/ac) and three hardwood basal areas (0, 15, and 30 ft2/ac); pretreatment basal areas averaged 119 and 33 ft2/ac for pines and hardwoods, respectively. Treatments were arranged in a 3 X 3 factorial randomized complete block design with three replicates, yielding 27 permanent 0.20 ac plots. Growth variables were regressed with residual pine and hardwood basal areas. Pine basal area and volume growth increased with the pine stocking level after thinning and decreased with the level of retained hardwoods. For basal area and merchantable volume, hardwood growth largely compensated for losses in the pine component, and thus, hardwood retention had little net effect on the total growth of the stand. The greatest impact of hardwood retention was on the stand's sawtimber growth, because hardwoods did not contribute to this product class. Each 1 ft2/ac of retained hardwood basal area reduced pine sawtimber growth by 6 to 10 bd ft Doyle/ac/yr, depending on the pine stocking. Because large differences existed in the value of timber products, retaining 15 and 30 ft2/ac of hardwoods reduced the value of timber production by 13 and 24%, respectively, at 4 yr after thinning. South. J. Appl. For. 21(4):168-174.


1990 ◽  
Vol 110 (5) ◽  
pp. 1501-1511 ◽  
Author(s):  
D L Wiest ◽  
J K Burkhardt ◽  
S Hester ◽  
M Hortsch ◽  
D I Meyer ◽  
...  

The induction of high-rate protein secretion entails increased biogenesis of secretory apparatus organelles. We examined the biogenesis of the secretory apparatus in the B cell line CH12 because it can be induced in vitro to secrete immunoglobulin (Ig). Upon stimulation with lipopolysaccharide (LPS), CH12 cells increased secretion of IgM 12-fold. This induced secretion was accompanied by preferential expansion of the ER and the Golgi complex. Three parameters of the rough ER changed: its area and volume increased 3.3- and 3.7-fold, respectively, and the density of membrane-bound ribosomes increased 3.5-fold. Similarly, the area of the Golgi stack increased 3.3-fold, and its volume increased 4.1-fold. These changes provide sufficient biosynthetic capacity to account for the increased secretory activity of CH12. Despite the large increase in IgM synthesis, and because of the expansion of the ER, the concentration of IgM within the ER changed less than twofold during the differentiation process. During the amplification of the rough ER, the expression of resident proteins changed according to one of two patterns. The majority (75%) of rough microsomal (RM) proteins increased in proportion to the increase in rough ER size. Included in this group were both lumenal proteins such as Ig binding protein (BiP), and membrane proteins such as ribophorins I and II. In addition, the expression of a minority (approximately 9%) of RM polypeptides increased preferentially, such that their abundance within the RM of secreting CH12 cells was increased. Thus, the expansion of ER during CH12 differentiation involves preferential increases in the abundance of a few resident proteins, superimposed upon proportional increases in most ER proteins.


2013 ◽  
Vol 10 (6) ◽  
pp. 3691-3703 ◽  
Author(s):  
D. Zhou ◽  
S. Q. Zhao ◽  
S. Liu ◽  
J. Oeding

Abstract. Partial cutting, which removes some individual trees from a forest, is one of the major and widespread forest management practices that can significantly alter both forest structure and carbon (C) storage. Using 748 observations from 81 studies published between 1973 and 2011, we synthesized the impacts of partial cutting on three variables associated with forest structure (mean annual growth of diameter at breast height (DBH), stand basal area, and volume) and four variables related to various C stock components (aboveground biomass C (AGBC), understory C, forest floor C, and mineral soil C). Results show that the growth of DBH increased by 111.9% after partial cutting, compared to the uncut control, with a 95% bootstrapped confidence interval ranging from 92.2 to 135.9%, while stand basal area and volume decreased immediately by 34.2% ([−37.4%, −31.2%]) and 28.4% ([−32.0%, −25.1%]), respectively. On average, partial cutting reduced AGBC by 43.4% ([−47.7%, −39.3%]), increased understory C storage by 391.5% ([220.0%, 603.8%]), but did not show significant effects on C stocks on forest floor and in mineral soil. All the effects, if significant (i.e., on DBH growth, stand basal area, volume, and AGBC), intensified linearly with cutting intensity and decreased linearly over time. Overall, cutting intensity had more strong impacts than the length of recovery time on the responses of those variables to partial cutting. Besides the significant influence of cutting intensity and recovery time, other factors such as climate zone and forest type also affected forest responses to partial cutting. For example, a large fraction of the changes in DBH growth remains unexplained, suggesting the factors not included in the analysis may play a major role. The data assembled in this synthesis were not sufficient to determine how long it would take for a complete recovery after cutting because long-term experiments were scarce. Future efforts should be tailored to increase the duration of the experiments and balance geographic locations of field studies.


FLORESTA ◽  
2002 ◽  
Vol 32 (1) ◽  
Author(s):  
Sebastião Do Amaral Machado ◽  
Ana Elizabete N. Tonon ◽  
Afonso Figueiredo Filho ◽  
Edilson Batista Oliveira

Foram analisados os efeitos de quatro densidades iniciais (2, 4, 8 e 25,15 mil plantas por hectare) e de 3 classes de sítio, cujos índices de sítios são 10,2; 13,5 e 16,8 m de altura dominante aos 7 anos de idade, sobre a área basal e volume por hectare em povoamentos nativos de bracatinga (Mimosa scabrella Benth.) na região metropolitana de Curitiba. Os dados provieram de um experimento de densidades em blocos ao acaso medidos nas idades de 4,1; 5,1; 6,3 e 7,6 anos. Os efeitos da densidade inicial e do sítio sobre a área basal (G) e volume (V) por hectare foram verificados através de análise de variância seguida do teste de Tukey, quando pertinente. A densidade inicial de 4 mil plantas por hectare gerou maiores valores de G e V nas últimas idades de medição. A área basal/ha não sofreu efeitos significativos do sítio em nenhuma das medições, enquanto que o volume/ha foi afetado por este fator (sítio) até a idade de 6,3 anos. Evolution of Basal Area and Volume per Hectare in Native "Bracatingais" Submited to Different Initial Densities and Different Sites Abstract The objectives of this research were to study the effects of four initial densities (2000, 4000, 8000 and 25150 plants/ha) and three site classes (site index 10.2, 13.5 and 16.8 m of dominant height at age seven) on basal area (G) and volume per hectare (V) for native stands of bracatinga (Mimosa scabrella Benth.) in the Metropolitan Region of Curitiba, Brazil. The data set came from permanent sample plots of a density trial established in a random blocks design. These plots were measured at ages 4.1, 5.1, 6.3, and 7.6 years of age. The effects of initial density and site on basal area and volume per hectare were verified through graphics and analysis of variance followed by the Tukey test when necessary. The initial density of 4,000 plants/ha generated the highest values of basal area and volume in the last ages of measurement. The basal area/ha did not sufered significative effects of site at any one of the measurement ages, while volume/ha was affected by this factor (site) until the age of 6.3 years.


1994 ◽  
Vol 10 (1) ◽  
pp. 1-26 ◽  
Author(s):  
T. B. A. Burghouts ◽  
E. J. F. Campbell ◽  
P. J. Kolderman

ABSTRACTEffects of tree species heterogeneity on leaf fall were studied in a primary (4 ha) and in a selectively logged forest plot (2.5 ha) in the Ulu Segama Forest Reserve, Sabah, Malaysia, from April 1988 to December 1989. Leaf fall was collected at 30 sampling points in each plot, and identified to species.Dipterocarpaceae, Euphorbiaceae, Lauraceae, Fagaceae and Meliaceae are important tree families in both plots with regard to their contribution to total basal area, tree density and annual leaf fall. The total number of tree species was higher in the primary forest plot (267) than in the logged forest plot (218), although the number of climber species was higher in the logged forest (44) than in the primary forest plot (33). The overlap in species composition between the two forest plots was relatively small (49%) compared with that in family composition (88%).In the primary forest plot, the Dipterocarpaceae contributed 29% of the total basal area and 34% of the annual leaf fall. In the logged forest plot these contributions were much lower, 11% and 15%. The contribution to annual leaf fall made by climbers and pioneer trees was higher in the logged forest plot (34%) than in the primary forest plot (8%).In the primary forest plot, leaf fall was dominated My large emergent and main canopy trees, mainly dipterocarps, and occurred as regular large peaks. In the logged forest leaf fall was dominated by climbers and many, relatively small trees of pioneer species, such as Macaranga hypoleuca, and was more evenly distributed in time.


1994 ◽  
Vol 24 (8) ◽  
pp. 1684-1688 ◽  
Author(s):  
P. Hopmans ◽  
H.N. Chappell

Application of 224 kg N/ha to young, thinned stands of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) at 35 sites in western Oregon and Washington significantly increased basal area and volume increment over 8 years following treatment. However, response varied considerably between sites, and relative volume increment exceeded 10% at only 19 of the 35 sites. Response to applied N was evaluated in relation to forest floor and soil variables as well as to levels of N in foliage. Relative responses in basal area and volume were significantly correlated with total N concentration and the C/N ratio of the soil. However, these relationships explained only part (18–22%) of the observed variation in response. In contrast, relative response was strongly correlated with the level of N in the foliage of nonfertilized trees at 11 sites, accounting for 94% of the variation between sites. Use of foliar N data clearly has potential to predict growth responses to N fertilization of young thinned Douglas-fir stands, although further work is needed to test the relationship for a wider range of sites and stands.


Sign in / Sign up

Export Citation Format

Share Document