scholarly journals Study the impact of A nanomixture of carbon black and clay on the mechanical properties of A series of irradiated natural rubber/ butyl rubber blend

Author(s):  
Dalal Alshangiti

Abstract A series of natural rubber/ butyl rubber NR/IIR blend loaded with N660 carbon black CB and triethoxy vinyl silane treated clay nano particles (TCNP) were prepared using gamma irradiation in the presence of polyfunctional monomer, trimethylolpropane triacrylate (TMPTA). The effect of incorporating different content of N660 carbon black and 5 part per hundred of rubber (phr) of treated clay on the mechanical properties of the prepared nano composites have been investigated. The additions of TCNP into CB/ rubber composites markedly increase their tensile strength due to the increase of the cross-link density. These results indicated that the TCNP may be enclosed or trapped in the occluded structure of CB. The effect of CB and TCNP content on the tensile strength (σ), elongation at break (εb %) and modulus of elasticity (E, MPa) of natural rubber/ butyl rubber NR/IIR blend have been investigated. The incorporation of 5 phr of TCNP into 30 phr carbon black loaded NR/ IIR composites results in the increased tensile strength value by about 60%. Finally, theoretical models were used to interpret the experimental results.

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 662-670
Author(s):  
Dalal M. Alshangiti

Abstract A series of natural rubber/butyl rubber NR/IIR blend loaded with N660 carbon black (CB) and triethoxy vinyl silane treated clay nanoparticles (TCNPs) were prepared using gamma irradiation in the presence of a polyfunctional monomer, trimethylolpropane triacrylate (TMPTA). The effect of incorporating different contents of N660 CB and five parts per hundred of rubber (phr) of treated clay on the mechanical properties of the prepared nanocomposites has been investigated. The addition of TCNP to CB/rubber composites markedly increase their tensile strength due to the increase of the cross-link density. These results indicated that the TCNP may be enclosed or trapped in the occluded structure of CB. The effect of CB and the TCNP content on the tensile strength (σ), elongation at break (ε b, %), and modulus of elasticity (E, MPa) of natural rubber/butyl rubber NR/IIR blend have been investigated. The incorporation of 5 phr of TCNP into 30 phr CB-loaded NR/IIR composites results in the increased tensile strength value by about 60%. Finally, theoretical models were used to interpret the experimental results.


2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2012 ◽  
Vol 510-511 ◽  
pp. 532-539 ◽  
Author(s):  
M.A. Bashir ◽  
M. Shahid ◽  
R.A. Alvi ◽  
A.G. Yahya

Natural rubber (polymer designation cis-1-4 polyisoprene, is obtained from the sap ("latex") of several rubber-yielding plants (e.g.,HeveaBrasiliensisandPartheniaargentatum) by coagulation with chemicals, drying, electrical coagulation, and other processes. Foamy or sponge structure of natural rubber (NR) is very useful in aerospace and as auxetic materials (exhibiting negative poisons ratio) for use in application of homeland security.The main aim of this research to estimate the influence of carbon black on mechanical properties, curing and viscosity variation behaviors of the natural rubber based composites. Different amounts of carbon black were used along with other fillers. The influence of carbon black on curing behavior and mechanicalproperties of natural rubber foams was investigated at different feedingratios of the carbon black. The physical properties of the foamed NRs were then measured as a function of carbon blacks content. The mechanical properties of the foamed NRs such as tensile strength,strength at break and modulus,were gradually increased with increasingcarbon black content whereas elongation decreasedat break.


2014 ◽  
Vol 87 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Sasidharan Krishnan ◽  
Rosamma Alex ◽  
Thomas Kurian

ABSTRACT A process for production of carbon black/silica/nanoclay ternary filler masterbatch from fresh natural rubber (NR) latex was standardized. The fillers, nanoclay, carbon black, and silica were incorporated in fresh NR latex by a modified coagulation process. The latex, mixed with filler dispersions, coagulated immediately on addition of acids. The coagulum containing fillers was dried at 70 °C in an air oven to get the latex filler masterbatch, which was further processed in the conventional way. The masterbatch compounds containing only silica/carbon black showed a higher level of vulcanization as compared with the corresponding dry mixes. The mechanical properties, such as tensile strength, modulus, tear strength, abrasion resistance, and hardness, increased with the proportion of nanoclay in the mixes up to 5 phr, and with a greater amount, the change was only marginal. Lower tan delta values were observed for all of the masterbatches containing nanoclay in the ranges of 3 to 10 phr compared with the control dry mix containing 25/25 carbon black/silica. The improvement in mechanical properties and dynamic properties shown by the masterbatches over the conventional mill-mixed compounds was attributed to factors related to filler dispersion, as evidenced from the data from dispersion analyzer images, X-ray diffractograms, and a higher level of vulcanization.


2021 ◽  
Vol 39 (4) ◽  
pp. 1142-1149
Author(s):  
A.C. Ezika ◽  
V.U. Okpechi

Effects of chemically treated and carbonized spear grass fibre on the curing and mechanical properties of natural rubber vulcanizates were carried out. Natural rubber (NR) was filled with carbonized (at carbonization temperatures of 400°C, 600°C and 800°C  respectively) and chemically treated (treatment with HCl and NaOH of 5% concentration) spear grass fillers respectively, at a filler loading of 30phr. The rubber compounding was carried out in a bambury mixer. The effect of carbonization temperature and chemical treatment of the filler on the mechanical properties (tensile strength, % elongation, hardness strength, abrasion resistance and compression set) and rheological properties (cure time, scorch time, maximum and minimum torque) were carried out on the  samples. The results of the mechanical properties of carbonized spear grass fibre (C-SGF) filled vulcanizates show that the optimum carbonization temperature for an improved tensile strength, % elongation, hardness, abrasion and compression set was obtained at 400°C. NaOH treated fibre filled vulcanizates showed better mechanical properties; with the highest abrasion resistance of 67.65%, while untreated and acidified fibre filled vulcanizates showed poor mechanical properties. Acidified (HCl) uncarbonized spear grass fibre (U-SGF) filled vulcanizate had the highest compression set of 48% against C-SGF filled vulcanzates and carbon black filled  vulcanizate, with carbon black filled vulcanizate having 47% as its compression set value. This reveals that at a carbonization temperature of 400°C, C-SGF appears to be a potential substitute filler for carbon black (CB). Keywords: Spear Grass Fibre, Natural Rubber, Chemical Treatments, Cure Characteristics, Mechanical Properties, Carbonization


2021 ◽  
Vol 19 (3) ◽  
pp. 194-201
Author(s):  
H. Boukfessa ◽  
B. Bezzazi

The present work investigates the effect of the amount of carbon black on curing and mechanical properties such as tensile strength, elongation at break, hardness and abrasion resistance of the natural rubber (NR)/ acrylonitrile-butadiene rubber (NBR) blend. For that purpose, a blend composed of 65% NR and 35% NBR filled with different content of carbon black N330 was used. The curing results indicate that the viscosity and the crosslink density of rubber composites increase and the scorch and curing times decrease with increasing the filler content. Mechanical properties such as tensile modulus and hardness of the CB filled NR/NBR blend were remarkably improved, indicating the inherent reinforcing potential of CB. Regarding tensile strength and abrasion resistance, they increase with the addition of carbon black, up to 50 phr. After that, these properties decrease slightly with filleraddition.


2013 ◽  
Vol 844 ◽  
pp. 255-258 ◽  
Author(s):  
Suradet Matchawet ◽  
Charoen Nakason ◽  
Azizon Kaesaman

Electrical and mechanical properties of epoxidized natural rubber (ENR-25) filled with conductive carbon black (CCB) have been investigated. SEM was used to analyze dispersion of CCB particles in rubber matrix. The results indicated that the AC conductivity increase with increasing volume fraction of carbon black as well as frequency. The percolation thresholds of the electrical conductivity was found at 0.10 volume fraction of CCB. Furthermore, addition of CCB at volume fraction 0.05 caused the highest tensile strength of the composites. The tensile strength and elongation at break were decreased with increasing content of CCB greater than 0.05 volume fraction. However, the volume fraction of CCB at 0.10 demonstrated the most suitable proportion for the ENR composites with superior electrical and mechanical properties.


2018 ◽  
Vol 14 (3) ◽  
pp. 348-352 ◽  
Author(s):  
Nur Amira Sahirah Abdullah ◽  
Zurina Mohamad

Poly (lactic acid)/epoxidized natural rubber (PLA/ENR) was prepared by using counter-rotating twin-screw extruder. For dynamic vulcanization process, ENR was compounded with 3 phr of N, N’-m-phenylenebismaleimide (HVA-2) as a crosslinking agent. The aim of this study is to determine the effect of unvulcanized and dynamically vulcanized of ENR on the properties of PLA/ENR blend. The blending of PLA with ENR was prepared with the various composition of ENR (0 wt% to 30 wt%). The morphology and mechanical properties of the blends were investigated by using scanning electron microscope (SEM), tensile test, and impact test. The unvulcanized blend produced a co-continuous morphology of PLA and ENR and the dynamically vulcanized blend shows the dispersed ENR rubber particles in PLA continuous matrix.  For both systems, the tensile strength value was dropped with the increasing amount of ENR content. The impact strength of both systems shows the maximum value at 20 wt% of ENR content. However, dynamically vulcanized PLA/ENR blend shows a better tensile strength and impact strength value as compared with unvulcanized blend.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document