scholarly journals Role of essential oils in antioxidant capacity and immunity in a rat model of mixed stress

2021 ◽  
Vol 51 (4) ◽  
pp. 426-436
Author(s):  
N. Seyidoglu ◽  
E. Koseli ◽  
R. Gurbanli ◽  
C. Aydin

Animal wellbeing is a balance between environmental stress and nutrition that regulates homeostasis. Augmentation of animal feed with essential oils can promote homeostasis. The present study was designed to observe the biochemical, immunological, and biological effects of daily administration of a mixture of essential oils (EOM) in a stressed rat model. Forty-eight adult male Sprague Dawley rats were  randomly allocated to four groups, namely a control group (C), a stressed group (S), a treated group (Tr), and a stressed group that  received the treatment (TrS). The treatment was applied by adding EOM to the water (0.2 ml/l) three days per week for 28 days. Two  chronic stressors (isolation and crowding) were applied to animals in groups S and TrS. Total oxidant status (TOS) increased in the S group  compared with C, whereas it decreased when fed with EOM. Although TOS was the same in S and C, it increased in Tr compared with C. There was a significant increase in interleukin 4 (IL-4) in S compared with C, and EOM reversed the IL-4 level. Nevertheless, an increase was seen in the weights of the liver, intestine, brain, and testes in TrS compared with S. The increase in water intake was a result of stress, but feeding with EOM decreased water consumption gradually. This study showed that 0.2 ml/l EOM had protective effects on antioxidant status, immunity and liver function, and decreased water consumption under stress conditions.

2021 ◽  
Vol 22 (16) ◽  
pp. 8373
Author(s):  
Viktorija Zitkute ◽  
Mindaugas Kvietkauskas ◽  
Vygante Maskoliunaite ◽  
Bettina Leber ◽  
Diana Ramasauskaite ◽  
...  

Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study was to investigate the protective effects of melatonin and glycine and their combination on IRI in a rat model of warm ischemia. In this study, Sprague-Dawley rats were assigned to eight groups, including sham and IRI (n = 80). Melatonin and glycine alone or their combination were administered prior to 1 h of uterus ischemia followed by 1 h of reperfusion. Melatonin (50 mg/kg) was administered via gavage 2 h before IRI and glycine in an enriched diet for 5 days prior to intervention. Uterus IRI was estimated by histology, including immunohistochemistry, and biochemical tissue analyses. Histology revealed that uterus IRI was significantly attenuated by pretreatment with melatonin (p = 0.019) and glycine (p = 0.044) alone as well as their combination (p = 0.003). Uterus IRI led to increased myeloperoxidase expression, which was significantly reduced by melatonin (p = 0.004), glycine (p < 0.001) or their combination (p < 0.001). The decline in superoxide dismutase activity was significantly reduced in the melatonin (p = 0.027), glycine (p = 0.038) and combined treatment groups (p = 0.015) when compared to the IRI control group. In conclusion, melatonin, glycine and their combination significantly reduced oxidative stress-induced cell damage after IRI in a small animal warm ischemia model, and, therefore, clinical studies are required to evaluate the protective effects of these well-characterized substances in uterus IRI.


2012 ◽  
Vol 63 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Xiu-Quan Shi ◽  
Wei Yan ◽  
Ke-Yue Wang ◽  
Qi-Yuan Fan ◽  
Yan Zou

We tested the hypothesis that dietary fi bre (DF) has protective effects against manganese (Mn)-induced neurotoxicity. Forty-eight one-month old Sprague-Dawley rats were randomly divided into six groups: control, 16 % DF, Mn (50 mg kg-1 body weight), Mn+ 4 % DF, Mn+ 8 % DF, and Mn+ 16 % DF. After oral administration of Mn (as MnCl2) by intragastric tube during one month, we determined Mn concentrations in the blood, liver, cerebral cortex, and stool and tested neurobehavioral functions. Administration of Mn was associated with increased Mn concentration in the blood, liver, and cerebral cortex and increased Mn excretion in the stool. Aberrations in neurobehavioral performance included increases in escape latency and number of errors and decrease in step-down latency. Irrespective of the applied dose, the addition of DF in forage decreased tissue Mn concentrations and increased Mn excretion rate in the stool by 20 % to 35 %. All neurobehavioral aberrations were also improved. Our fi ndings show that oral exposure to Mn may cause neurobehavioral abnormalities in adult rats that could be effi ciently alleviated by concomitant supplementation of DF in animal feed.


2020 ◽  
Vol 23 (4) ◽  
pp. 570-579
Author(s):  
Mahboubeh Sheikhan ◽  
◽  
Mohammad Reza Kordi ◽  
Hamid Rajabi ◽  
◽  
...  

Background and Aim: Several microRNAs are involved in regulating muscle mass, which plays an essential role in hypertrophy and atrophy of skeletal muscle, The present study examined the expression of some genes as regulators of muscular atrophy following a period of inertia in rats. Methods & Materials: For this purpose, 18 male Sprague-Dawley rats were divided into three groups (Control, Exercise+inactivity, and Inactivity). The exercise+inactivity group run on the treadmill for 18 weeks and five times per week. The hindlimb of the animal was immobilized for seven days with the casting method. Soleus muscle was extracted and the expression of the genes was measured by the RT-PCR method. Univariate ANOVA and Tukey post hoc test was used to determine the differences (α=0.05). Ethical Considerations: The Ethics Committee of the Tehran University of Medical Sciences Research approved this study (Code: IR.SUMS.REC.1396.S 463). Results: Results showed that immobilization in both Exercise+ inactivity and inactivity groups, compare to the control group, increased expression of miR-1 genes (P<0.10), FOXO3a (P<0.001) and decreased expression of miR-206 (P<0.007) and IGF-1 (P<0.001). This difference was statistically significant. Conclusion: According to the results of this study, it can be said that changes in the expression of RNAs by chromatography cause changes in the expression of muscle regulating genes, and although endurance exercises have protective effects, they cannot prevent these changes.


2016 ◽  
Vol 34 (3) ◽  
pp. 184-193 ◽  
Author(s):  
Xiao Xu ◽  
Miao-Miao Wang ◽  
Zhi-ling Sun ◽  
Dan-ping Zhou ◽  
Ling Wang ◽  
...  

Objective To examine the possible impact of moxibustion on the serum proteome of the collagen-induced arthritis (CIA) rat model. Materials and Methods Thirty-six male Sprague-Dawley rats were included in this experiment. The CIA animal model was prepared by injection of type II bovine collagen in Freund's adjuvant on the first and seventh day. The 36 rats were randomly divided into two groups: the untreated CIA group (control), and the CIA plus treatment with moxibustion (CIA+moxi) group. Moxibustion was administered daily at ST36 and BL23 for 7, 14 or 21 days (n=12 rats each). Arthritis score was used to assess the severity of arthritis. At the end of each 7 day treatment, blood samples from the control group and the CIA+moxi group were collected. After removal of high abundance proteins from serum samples, two-dimensional gel combined with matrix-assisted laser desorption ionisation time-of-flight MS/MS (MALDI-TOF-MS/MS) techniques were performed to examine serum protein expression patterns of the CIA rat model with and without moxibustion treatment. In addition, the relevant proteins were further analysed with the use of bioinformatics analysis. Results Moxibustion significantly decreased arthritis severity in the rats in the CIA+moxi group, when compared with the rats in the CIA group 35 days after the first immunisation (p=0.001). Seventeen protein spots which changed >1.33 or <0.77 at p<0.05 using Bonferonni correction for multiple testing were found to be common to all three comparisons, and these proteins were used for classification of functions using the Gene Ontology method. Consequently, with the use of the Ingenuity Pathway Analysis, the top canonical pathways and a predicted proteomic network related to the moxibustion effect of CIA were established. Conclusions Using the proteomics technique, we have identified novel candidate proteins that may be involved in the mechanisms of action underlying the beneficial effects of moxibustion in rats with CIA. Our findings suggest that immune responses and metabolic processes may be involved in mediating the effects of moxibustion. Moreover, periodxiredoxin I (PRDX1) and inositol 1,4,5-triphosphate receptor (IP3R) may be potential targets.


2017 ◽  
Vol 34 (2) ◽  
pp. 69-82 ◽  
Author(s):  
Bahattin Avci ◽  
S. Sirri Bilge ◽  
Gokhan Arslan ◽  
Omer Alici ◽  
Ozge Darakci ◽  
...  

In this study, we aimed to study the possible preventive effect of docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, on toxicity caused by chlorpyrifos (CPF). Six groups of Sprague Dawley rats (200–250 g) consisting of equal numbers of males and females (n = 8) were assigned to study. The rats were orally given for 5 days. The control group was administered pure olive oil, which was the vehicle for CPF. The CPF challenge groups were administered oral physiological saline, pure olive oil, or DHA (50, 100 and 400 mg/kg dosages) for 5 days. The animals were weighed on the sixth day and then administered CPF (279 mg/kg, subcutaneously). The rats were weighed again 24 h following CPF administration. The body temperatures and locomotor activities of the rats were also measured. Blood samples, brain and liver tissues were collected for biochemical, histopathological and immunohistochemical examinations. A comparison with the control group demonstrated that CPF administration increased malondialdehyde (MDA) levels in blood, brain and liver, while it reduced catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) concentrations ( p < 0.05–0.001). Advanced oxidation protein products (AOPPs) increased only in the brain ( p < 0.001). DHA reduced these changes in MDA and AOPP values ( p < 0.05–0.001), while it increased CAT, SOD and GPx concentrations ( p < 0.05–0.001). Similarly, DHA prevented the decreases in body weight, body temperature and locomotor activities caused by CPF at 100 mg/kg and 400 mg/kg dosages ( p < 0.05–0.001). Similar to the physiological and biochemical changes, the histopathological damage scores, which increased with CPF ( p < 0.05–0.01), decreased at all three dosages of DHA ( p < 0.05–0.01). Our findings suggest that DHA, by supporting the antioxidant mechanism, reduces toxicity caused by CPF.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Jing Xu ◽  
Guanghui Zheng ◽  
Juntao Hu ◽  
Weiwei Ge ◽  
Jennifer Bradley ◽  
...  

Introduction: JZL184 is a synthetic monoacylglycerol lipase inhibitor that reduces brain edema, infarct size and alleviates inflammation following cerebral ischemia in experimental studies. In this study, we compared its cerebral protective effects with therapeutic hypothermia following cardiopulmonary resuscitation (CPR) in a rat model. Hypothesis: JZL184 will have similar neuroprotective effects to therapeutic hypothermia after cardiac arrest (CA) by reducing brain and blood brain barrier (BBB) injury and preserving cerebral microcirculation following CPR. Methods: Thirty six male Sprague-Dawley rats weighing between 450-550 g were randomized: 1) control 2) hypothermia 3) JZL184. Ventricular fibrillation was induced and untreated for 6 min for all rats. Resuscitation was attempted with a 4 Joule defibrillation after 8 min of CPR. Immediately following resuscitation, either hypothermia (33+0.5 o C) or JZL184 (16 mg/k, IP) was administered. Cerebral microcirculation, S-100β, NSE and Evan’s Blue (EB) concentrations were analyzed at 6hrs after resuscitation. Results: NSE and S-100β levels were higher in control compared to hypothermia and JZL18 at 6hr post ROSC (p < 0.001) (Fig. 1). Compared with control, there was a significant decrease in brain permeability to EB in Hypothermia and JZL184 after 6hr post ROSC (p<0.001) (Fig. 2). Microvascular flow index (MFI) was reduced in control compared with hypothermia and JZL184 6hr post ROSC (p <0.01). Conclusions: JZL184 administered following resuscitation reduced brain and BBB injury and preserved cerebral microcirculation at 6 hr post arrest to the same extent as hypothermia in a rat model of cardiac arrest.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
H R Helmi ◽  
A P Sunjaya ◽  
D Limanan ◽  
A R Prijanti ◽  
S W A Jusman ◽  
...  

Abstract Background Apelin, an adipokine peptide and its receptor has recently emerged as a key signaling pathway in maintaining cardiac performance at chronic pressure loads. Apelin has been linked to ventricular dysfunction and therefore maybe of pathophysiologic relevance as a candidate biomarker in HF patients. Purpose This study aims to investigate Apelin-13 gene expression and level, and Apelin receptor (APJ) level in a rat model of heart failure induced by chronic systemic hypoxia and their correlation to BNP-45 gene expression and level, the current gold standard biomarker for heart failure, and to cardiac histopathologic changes. The effect of chronic systemic hypoxia on cardiac hypertrophy, remodeling and heart failure parameters is also of interest. Methods Twenty-eight male Sprague-Dawley rats (8–12 weeks of age) were placed in special hypoxic chambers divided into 7 groups – a control group provided with normoxia (atmospheric O2 levels) and 6 exposure groups exposed to hypoxia (8% O2) for 6 hours, 1, 3, 5, 7 and 14 days respectively prior to measurement. Changes in the expression of Apelin and BNP-45 were measured using quantitative real-time PCR, whereas changes in Apelin-13, APJ and BNP-45 levels were measured using ELISA. Histopathology staining using Hematoxylin and Eosin was performed on cardiac tissues post-termination. Results Compared to control, BNP-45 mRNA expression in the hypoxic heart was only significantly different in day 14, whereas, Apelin mRNA expression had showed significantly higher values starting from day 7 onward. This is in line with the evidence of cardiac hypertrophy based on histopathologic examination present from day 7 onwards. BNP-45 and Apelin-13 levels were significantly higher compared to control from day 5 onwards with a peak on day 7. Although significantly higher than control, Apelin-13 and BNP-45 level decreases in day 14 as compared to day 7. Mean APJ levels showed a similar profile with Apelin-13 and BNP-45 levels with a peak in day 7 (4.619 ng/mL). The cardiac Apelin-13 level shows strong significant correlation with BNP-45 levels (r 0.823, p-value 0.0001). There was also a strong significant correlation between APJ receptor levels with Apelin-13 (r 0.9029, p-value 0.001) and BNP-45 (r 0.9062, p-value 0.0009) levels. Apelin-13, APJ and BNP-45 levels also showed strong significant positive correlation to the duration of hypoxia exposure. Conclusion Chronic (≥5 days) and not acute systemic hypoxia in an experimental rat model leads to increase in Apelin-13, APJ and BNP-45 levels. Apelin-13 and BNP-45 were found to significantly increase from 5 days onwards. Apelin mRNA expression was found to show significant increase earlier compared to BNP-45 mRNA expression. Hence, Apelin may serve as a new candidate biomarker for detection of HF due to oxidative stress compared to BNP-45. Exposure to chronic systemic hypoxia can serve as an easily replicable rat model for heart failure. Acknowledgement/Funding Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jakarta, Indonesia


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sang-Yeon Lee ◽  
Jeonghyo Kim ◽  
Sangjin Oh ◽  
Gaon Jung ◽  
Ki-Jae Jeong ◽  
...  

Abstract This study was performed to investigate the Eustachian tube as a potential route for contralateral spreading following intratympanic nanoparticle (NP)-conjugated gentamicin injection in a rat model. Sprague–Dawley rats were divided into three groups and substances were injected in the right ear: group 1 (fluorescent magnetic nanoparticles [F-MNPs], n = 4), group 2 (F-MNP-conjugated gentamicin [F-MNP@GM], n = 2), and control group (no injections, n = 2). T2-weighted sequences corresponding to the regions of interest at 1, 2, and 3 h after intratympanic injection were evaluated, along with immunostaining fluorescence of both side cochlea. The heterogeneous signal intensity of F-MNPs and F-MNP@GM on T2-weighted images, observed in the ipsilateral tympanum, was also detected in the contralateral tympanum in 4 out of 6 rats, recapitulating fluorescent nanoparticles in the contralateral cochlear hair cells. Computational simulations demonstrate the contralateral spreading of particles by gravity force following intratympanic injection in a rat model. The diffusion rate of the contralateral spreading relies on the sizes and surface charges of particles. Collectively, the Eustachian tube could be a route for contralateral spreading following intratympanic injection. Caution should be taken when using the contralateral ear as a control study investigating inner-ear drug delivery through the transtympanic approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Qiqi Zhu ◽  
Haobo Li ◽  
Xiang Xie ◽  
Xiaozhen Chen ◽  
Ramoji Kosuru ◽  
...  

Myocardial ischemic postconditioning- (IPo-) mediated cardioprotection against myocardial ischemia-reperfusion (IR) injury needs the activation of signal transducer and activator of transcription 3 (STAT3), which involves adiponectin (APN). APN confers its biological effects through AMP-activated protein kinase- (AMPK-) dependent and AMPK-independent pathways. However, the role of AMPK in APN-mediated STAT3 activation in IPo cardioprotection is unknown. We hypothesized that APN-mediated STAT3 activation in IPo is AMPK-independent and that APN through AMPK-dependent STAT3 activation facilitates IPo cardioprotection. Here, Sprague-Dawley rats were subjected to myocardial IR without or with IPo and/or APN. APN or IPo significantly improved postischemic cardiac function and reduced myocardial injury and oxidative stress, and their combination further attenuated postischemic myocardial injuries. APN or its combination with IPo but not IPo alone significantly increased AMPK activation and both nuclear and mitochondrial STAT3 activation, while IPo significantly enhanced mitochondrial but not nuclear STAT3 activation. In primarily isolated cardiomyocytes, recombined globular APN (gAd), hypoxic postconditioning (HPo), or their combination significantly attenuated hypoxia/reoxygenation-induced cell injury and increased nuclear and/or mitochondrial STAT3 activation. STAT3 inhibition had no impact on gAd or gAd in combination with HPo-induced AMPK activation but abolished their cellular protective effects. AMPK inhibition did not affect HPo cardioprotection but abolished gAd cardioprotection and disabled gAd to facilitate/enhance HPo cardioprotection and STAT3 activation. These results suggest that APN confers cardioprotection through AMPK-dependent and AMPK-independent STAT3 activation, while IPo confers cardioprotection through AMPK-independent mitochondrial STAT3 activation. Joint use of APN and IPo synergistically attenuated myocardial IR injury by activating STAT3 via distinct signaling pathways.


2017 ◽  
Vol 16 (1) ◽  
pp. 167-167
Author(s):  
M.S. Berke ◽  
Klas S.P. Abelson

Abstract Aims This study investigated the effects of buprenorphine treatment on pain and welfare parameters and model specific parameters in a rat model of monoarthritis to eliminate unnecessary pain from this model. Methods 32 male Sprague Dawley rats were divided into four groups: (1) A negative control without arthritis receiving no analgesia. (2) A positive monoarthritic control group receiving no analgesia, but subcutaneous saline injections twice a day. (3) A positive control with monoarthritis receiving subcutaneous carprofen once a day and saline once a day. (4) A group with monoarthritis receiving subcutaneous buprenorphine twice a day. Monoarthritis was induced with an injection of 0.02 ml Complete Freund’s Adjuvant intra-articularly in the left tibiotarsal joint. Treatment with analgesia was initiated at day 15 and the rats were euthanized at day 23. Results The induced monoarthritis elicited a pronounced acute inflammation. Several parameters such as bodyweight, mobility, stance, joint-stiffness and lameness scores were affected. A marked mechanical hyperalgesia in the tarsal area was observed by Electronic Von Frey testing, but no severe compromise of the animal welfare was seen at any time. Signs of chronic development began to appear from day 10 after the monoarthritic induction. No significant change in serum cytokines and faecal corticosterone measurements was found after administration of buprenorphine. A minor decrease in body weight was seen, and a higher pain tolerance to mechanical stimuli was observed, indicating pain alleviation. The histological examination confirmed monoarthritic development in all monoarthritic rats and revealed periarticular lesions suggesting diffusion of adjuvant from intra-articular injection site to the periphery. Conclusions The study demonstrated that buprenorphine has an analgesic effect in the adjuvant induced monoarthritic rat model, without obvious interference with the development of arthritis.


Sign in / Sign up

Export Citation Format

Share Document