scholarly journals Adsorption efficiency of coconut shell-based activated carbons on colour of molasses, oils, dissolved oxygen and related parameters from industrial effluent

2010 ◽  
Vol 1 (1) ◽  
Author(s):  
C.E Gimba ◽  
M Turoti
2014 ◽  
Vol 896 ◽  
pp. 149-152 ◽  
Author(s):  
Eka Yusmartini ◽  
Dedi Setiabudidaya ◽  
Ridwan ◽  
Marsi ◽  
Faizal

The purpose of this study is to prepare activated carbon from coconut shell to be used as an adsorbent for heavy metals. The coconut shell was carbonized at a temperature of 700°C and the resulting carbon is finely milled and sieved through No 200 mesh. Sulfuric acid is used as an activator for this process. The characteristics of the resulting activated carbon were tested and the results are as follows: moisture content 1.641%, ash content of 0.554%, iodine adsorption of 960.21 mg/g and the adsorption of methyl blue 212.1 mg/g. The small particle size of the activated carbon increases the surface area measured using BET method to 398.721 m2/g. Adsorption kinetic and adsorption efficiency of the activated carbon on Pb by batch method follow pseudo second-order equation order model with adsorption capacity at equilibrium equal to 24.491 mg per g Pb (II) adsorbent.


2018 ◽  
Vol 44 ◽  
pp. 00089 ◽  
Author(s):  
Joanna Lach ◽  
Anna Szymonik ◽  
Agnieszka Ociepa-Kubicka

The possibility of using activated carbon for the removal of salicylic acid andiibuprofen sodium has been explored. These compounds are observed in crude and treated sewage and in surface water. The effect of pH on the adsorption efficiency was assessed. Tests were carried out from solutions with pH ranging from 2 to 10 (salicylic acid) and from 6 to 10 (iibuprofen sodium). It was found that the higher pH, the lower the adsorption of the compounds tested. Salicylic acid was most efficiently adsorbed from a solution with pH = 2, in which it occurred mainly in an undissociated form. The achieved efficiency of salicylic acid adsorption from solutions with pH=2 was 91%, while from those with pH=10, it was 55% (Co=4 mmol/L). The efficiency of removing ibuprofen sodium from the pH=6 solution was 64%, while from the pH = 10 solution, 60%.The adsorption of both salicylic acid and ibuprofen sodium follows the kinetics equation of the pseudo-2nd order. For the description of the adsorption isotherms, the Freundlich, Langmuir, Temkin and Dubibin-Radushkevich models were employed. The both compounds are described with the highest correlation coefficient in the case of the Freundlich equation.


2020 ◽  
Vol 32 (10) ◽  
pp. 2653-2659
Author(s):  
Tumma Prasanna Kumar Reddy ◽  
Sayana Veerababu ◽  
Malireddy Venkata Sai Mohan Reddy ◽  
Kunta Ravindhranath

Three different activated carbons as effective adsorbents were prepared by digesting the stems of Cordia dichotoma, Albizia thompsonii and Polyalthia cerasoides plants in conc. H2SO4 for Cu2+ removal from wastewater. The sorption natures of these sorbents are optimized with respect to various physico-chemical characteristics for the maximum Cu2+ removal using simulated waters. Cordia dichotoma (CDAC), Albizia thompsonii (ATAC) and Polyalthia cerasoides (PCAC) activated carbons show good sorption capacities of values: 97.0, 76.8 and 66.7 mg/g, respectively in a wide pH ranges. Unlike that of other two activated carbons, Cordia dichotoma activated carbon is effective even in acid conditions, indicting its direct applicability to Cu-based industrial effluents which are generally acidic in nature. Interference of two fold excess of co-ions is minimal. The established extraction conditions for the removal of more than 95.0% from 10 ppm Cu2+ solution at room temperature (303 K) using CDAC as sorbent are: pH: 3-9; time of equilibration: 1 h; sorbent dosage: 0.100 g/100 mL; with ATAC: pH: 6-9; time of equilibration: 1.5 h and sorbent dosage: 0.125 g/100 mL; and with PCAC: pH: 6-9; time of equilibration: 2.0 h and sorbent dosage 0.50 g/100 mL. Spent adsorbents can be regenerated and reused until four cycles with minimal loss of adoption capacities. Thermodynamic studies revealed that the sorption is spontaneous and endothermic in nature. Further, the ΔH value for CDAC is 30.156 KJ/mol; it indicates the strong chemisorption and may be through reduction to Cu+/Cu and/or complex formation between Cu2+ and functional groups of the adsorbent. The ΔH values of other two activated carbons, ATAC and PCAC, indicated that the sorption is mainly physical with strong inclination towards chemical nature. Positive ΔS values of all the three sorbents, emphasizes the disorder or randomness at the solid-liquid interface and hence favourable conditions for more penetration of Cu2+ into the surface layers of the adsorbent and hence, more removal of Cu2+ ions. The negative ΔG values indicate that the sorption forces are good enough to cross the potential barrier at the solid-liquid interface and hence the process is spontaneous. The prepared three activated carbons were also successfully applied to industrial effluent and polluted lake samples.


Sign in / Sign up

Export Citation Format

Share Document