Preparation of Activated Carbons from Coconuts Shell for Pb (II) Adsorption

2014 ◽  
Vol 896 ◽  
pp. 149-152 ◽  
Author(s):  
Eka Yusmartini ◽  
Dedi Setiabudidaya ◽  
Ridwan ◽  
Marsi ◽  
Faizal

The purpose of this study is to prepare activated carbon from coconut shell to be used as an adsorbent for heavy metals. The coconut shell was carbonized at a temperature of 700°C and the resulting carbon is finely milled and sieved through No 200 mesh. Sulfuric acid is used as an activator for this process. The characteristics of the resulting activated carbon were tested and the results are as follows: moisture content 1.641%, ash content of 0.554%, iodine adsorption of 960.21 mg/g and the adsorption of methyl blue 212.1 mg/g. The small particle size of the activated carbon increases the surface area measured using BET method to 398.721 m2/g. Adsorption kinetic and adsorption efficiency of the activated carbon on Pb by batch method follow pseudo second-order equation order model with adsorption capacity at equilibrium equal to 24.491 mg per g Pb (II) adsorbent.

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1242
Author(s):  
Hanedi Elhleli ◽  
Faten Mannai ◽  
Mongi ben Mosbah ◽  
Ramzi Khiari ◽  
Younes Moussaoui

Activated carbon obtained from Opuntia ficus indica by sodium hydroxide activation was employed for the adsorption of p-nitrophenol from water. The activated carbons obtained were characterized by Fourier transforms infrared spectroscopy, sorption of nitrogen, scanning electron microscopy, and Boehm titration. Effects of pH, contact time, amount of adsorbent, and temperature on the adsorption of p-nitrophenol were studied. Adsorption isotherms were analyzed using Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich models, and the thermodynamic parameters have been determined. The adsorption of p-nitrophenol was spontaneous, exothermic, and propitious at 15 °C and adopted the pseudo-second order model, and the most credible isotherm was Langmuir’s one. The activated carbon used in this work has good p-nitrophenol adsorption characteristics, and the study of the desorption and reuse of this carbon shows that it retains a removal rate greater than 94% after five cycles of adsorption-desorption.


2019 ◽  

<p>Synthetic dyes have a hurtful effect on human health and the environment. In this work, activated carbon was produced from date stones for use in elimination of methylene blue charged in aqueous solutions. Before that, the adsorbent was characterized by BET method, SEM, X-ray and TGA. The results of the adsorption kinetics are describe better with the pseudo-second order model (R2= 0.998). Frendlich adsorption isotherm model describe better the experimental data than the Langmuir model. The capacity for methylene blue removal was found to be 163.67 mg/g. Batch experiments studies show that the activated carbon produced as of date stones can be used effectively in the treatment of cationic dyes in aqueous solutions.</p>


2021 ◽  
Vol 6 (7) ◽  
pp. 11-19
Author(s):  
Igbemi Arthur Igbemi ◽  
Ify L. Nwaogazie ◽  
Onyewuchi Akaranta ◽  
G. O. Abu

This study investigated the removal of Lead and Cadmium ions from aqueous solution using activated carbons from agricultural wastes. Activated carbons prepared by chemical activation using Phosphoric acid were characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The influence of contact time, initial concentration and adsorbent dose which governed the efficiency of the process was ascertained through batch adsorption studies. Adsorption isotherms were determined by correlating with Langmuir and Freundlich isotherms and the kinetic studies were correlated with pseudo first order and pseudo second order equations. The results showed that the amount of Lead and Cadmium adsorbed decreased as the adsorbent dose increased while the adsorption capacity increased with increased in contact time and initial concentration. Activated carbons prepared from Coconut shell and palm kernel (shell and cake) competed favorably with the commercial activated carbon in percentage removal of the metal ions as all the activated carbons had over 90 % removal within 60 minutes when 1g of adsorbent was used. The equilibrium data fitted best into Freundlich isotherms for both metal ions. The rate of adsorption could be described by pseudo second order for all the adsorbents except Coconut shell activated carbon in the adsorption of Lead while intra-particle diffusion was the limiting step for Cadmium adsorption. Therefore, the agricultural by-products can be used as effective, low-cost, and environmentally friendly adsorbents for domestic water treatment in many parts of the world.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


2018 ◽  
Vol 44 ◽  
pp. 00089 ◽  
Author(s):  
Joanna Lach ◽  
Anna Szymonik ◽  
Agnieszka Ociepa-Kubicka

The possibility of using activated carbon for the removal of salicylic acid andiibuprofen sodium has been explored. These compounds are observed in crude and treated sewage and in surface water. The effect of pH on the adsorption efficiency was assessed. Tests were carried out from solutions with pH ranging from 2 to 10 (salicylic acid) and from 6 to 10 (iibuprofen sodium). It was found that the higher pH, the lower the adsorption of the compounds tested. Salicylic acid was most efficiently adsorbed from a solution with pH = 2, in which it occurred mainly in an undissociated form. The achieved efficiency of salicylic acid adsorption from solutions with pH=2 was 91%, while from those with pH=10, it was 55% (Co=4 mmol/L). The efficiency of removing ibuprofen sodium from the pH=6 solution was 64%, while from the pH = 10 solution, 60%.The adsorption of both salicylic acid and ibuprofen sodium follows the kinetics equation of the pseudo-2nd order. For the description of the adsorption isotherms, the Freundlich, Langmuir, Temkin and Dubibin-Radushkevich models were employed. The both compounds are described with the highest correlation coefficient in the case of the Freundlich equation.


2019 ◽  
Vol 80 (5) ◽  
pp. 884-891
Author(s):  
Daying Chen ◽  
Nasi Tu ◽  
Changkun Si ◽  
Meilin Yin ◽  
Xiaohui Wang

Abstract Mesoporous TiO2 has been prepared by a brief and simple sol–gel processing and applied for the removal of Cu(II) from aqueous solution. The adsorption behavior of mesoporous TiO2 for Cu(II) was investigated using batch experiments. Results showed that the pseudo-second-order model and Langmuir isotherm were more accurate to describe the kinetics process and adsorption isotherm. Mesoporous TiO2 adsorbent displayed excellent Cu(II) adsorption efficiency (195.52mg g−1). The thermodynamic parameters showed that the adsorption was spontaneous and endothermic. It was also found that mesoporous TiO2 could be used at least seven times without obvious loss of its original adsorption efficiency. Therefore, the obtained mesoporous TiO2 could be employed as an effective and low-cost adsorbent for removal of Cu(II) from contaminated effluents.


2007 ◽  
Vol 55 (5) ◽  
pp. 145-152 ◽  
Author(s):  
S. Vinitnantharat ◽  
W. Rattanasirisophon ◽  
Y. Ishibashi

This study presents the results of the sorption performances for geosmin removal by sorption onto granular activated carbons (GAC) manufactured from different raw materials of coconut shell and bituminous coal. The surface of GAC was modified by chitosan coating. The 90% deacetylated chitosan flakes were used for coating on GAC with the GAC: chitosan ratio of 5:1. The surface of GAC was characterised by scanning electron microscope (SEM) analysis, Fourier transform infrared spectroscopy and measurement of the pH solution of GAC samples. The sorption of geosmin onto the chitosan for both uncoated and coated GACs could be described by the Freundlich adsorption model. Data revealed that the sequence of Freundlich constant (KF) was chitosan coated bitominous coal (CB) &gt; uncoated bituminous coal (UB) &gt; chitosan coated coconut shell (CC) ≅ uncoated coconut shell (UC). The bituminous coal based GAC with chitosan coating had a maximum capacity of 23.57 μg/g which was approximately two-fold of uncoated bituminous coal based GAC. Two simplified kinetic models, pseudo-first order and pseudo-second order, were tested to investigate the sorption mechanisms. It was found that the intraparticle diffusion was a rate controlling step for the sorption and followed the pseudo-second order equation.


2014 ◽  
Vol 1043 ◽  
pp. 219-223 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Jibril Mohammed ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Dadum Hamza ◽  
Husna Mohd. Zain ◽  
...  

Concern about environmental protection has increased over the years and the presence of volatile organic compounds (VOCs) in water poses a threat to the environment. In this study, coconut shell activated carbon (PHAC) was produced by potassium hydroxide activation via microwave for benzene and toluene removal. Equilibrium data were fitted to Langmuir, Freundlich and Tempkin isotherms with all the models having R2 > 0.94. The equilibrium data were best fitted by Langmuir isotherm, with maximum adsorption capacity of 212 and 238mg/g for benzene and toluene, respectively. The equilibrium parameter (RL) falls between 0 and 1 confirming the favourability of the Langmuir model. Pseudo-second-order kinetic model best fitted the kinetic data. The PHAC produced can be used to remediate water polluted by VOCs.


2014 ◽  
Vol 612 ◽  
pp. 187-192
Author(s):  
Supriya Gawhane

Due to explosive growth of industrial and agricultural activities, there is rise in pollutants in water including heavy metals and toxic elements. In light of increasing pollution load of environment it is imperative to address this problem by different approaches and means.Of the numerous unit processes, evaluated to control pollution, to a degree, adsorption by GAC is one of the best available broad spectrum technologies. Scavenging of a precious metal such as Nickel, present in aqueous systems can be carried out with or without use of carrier such as 8-hydroxyquinoline (Oxine) and its derivatives on various grades of as received activated carbons. The carrier improves uptake of metal ions by GAC. The adsorption process agrees with the Langmuir and Freundlich models and also obeys pseudo-second order kinetics.


Sign in / Sign up

Export Citation Format

Share Document