scholarly journals Optimized models of xenobiotic-induced oxidative stress in HepG2 cells

2021 ◽  
Vol 18 (5) ◽  
pp. 1001-1007
Author(s):  
Yollada Sriset ◽  
Waranya Chatuphonprasert ◽  
Kanokwan Jarukamjorn

Purpose: To evaluate the molecular impact of ethanol, sodium selenite, and tert-butyl hydroperoxide (TBHP) on oxidant-antioxidant balance in HepG2 cells to establish an optimized oxidative stress model of HepG2 cells. Methods: HepG2 cells were treated with ethanol (10 - 500 mM) and sodium selenite (1 - 10 µM) for 24 and 48 h and with TBHP (50 - 200 µM) for 3 and 24 h, respectively. Biomarkers for cellular injury, ie, lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA), and for antioxidant system, i.e., superoxide dismutase (SOD), catalase (CAT), and total glutathione content, were determined. Results: All treatments increased the levels of LDH, AST, ALT, and MDA but decreased SOD and CAT activities and the total glutathione content in HepG2 cells. Oxidative stress was induced by these oxidative stressors in HepG2 cells via oxidant-antioxidant imbalance, with TBHP (100 µM, 3 h) acting as a powerful oxidant based on the minimal time to induce oxidative stress. The antioxidants, ascorbic acid and gallic acid, improved oxidant-antioxidant imbalance against xenobiotic-induced oxidative stress in HepG2 cells. Conclusion: These oxidative stress models are suitable for investigating the antioxidant and/or hepatoprotective potential of chemicals, including natural compounds.

2020 ◽  
Vol 17 ◽  
pp. 100172
Author(s):  
Giridhari Pal ◽  
Tapan Behl ◽  
Vishwajeet Rohil ◽  
Mimansa Khandelwal ◽  
Garima Gupta ◽  
...  

Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 374 ◽  
Author(s):  
Sujin Lim ◽  
Misung Kwon ◽  
Eun-Ji Joung ◽  
Taisun Shin ◽  
Chul-Woong Oh ◽  
...  

Sargassum species have been reported to be a source of phytochemicals, with a wide range of biological activities. In this study, we evaluated the hepatoprotective effect of a meroterpenoid-rich fraction of the ethanolic extract from Sargassum serratifolium (MES) against tert-butyl hydroperoxide (t-BHP)-treated HepG2 cells. Treatment with MES recovered the cell viability from the t-BHP-induced oxidative damage in a dose-dependent manner. It suppressed the reactive oxygen species production, lipid peroxidation, and glutathione depletion in the t-BHP-treated HepG2 cells. The activity of the antioxidants induced by t-BHP, including superoxide dismutase (SOD) and catalase, was reduced by the MES treatment. Moreover, it increased the nuclear translocation of nuclear factor erythroid 2-related factor 2, leading to the enhanced activity of glutathione S transferase, and the increased production of heme oxygenase-1 and NAD(P)H:quinine oxidoreductase 1 in t-BHP-treated HepG2 cells. These results demonstrate that the antioxidant activity of MES substituted the activity of the SOD and catalase, and induced the production of detoxifying enzymes, indicating that MES might be used as a hepatoprotectant against t-BHP-induced oxidative stress.


Author(s):  
Udedi Stanley Chidi ◽  
Ani Onuabuchi Nnenna ◽  
Asogwa Kingsley Kelechi ◽  
Maduji Fitzcharles Chijindu ◽  
Okafor Clinton Nebolisa

This study investigated the in-vitro antioxidant activity of ethanol leaf extract of Justicia carnea and its effect on antioxidant status of alloxan-induced diabetic albino rats. The in-vitro antioxidant activity was assayed by determining the total phenol, flavonoids, ascorbic acid, β-carotene and lycopene contents and by using 2,2 diphenyl-1-picrylhydrazyl (DPPH) radical, reducing antioxidant power and inhibition of lipid peroxidation antioxidant systems. Oxidative stress was produced in rats by single intraperitoneal injection of 150 mg/kg alloxan and serum concentration of malonaldehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were determined. Five experimental groups of rats (n=6) were used for the study. Two groups of diabetic rats received oral daily doses of 100 and 200 mg/kg Justicia carnea leaf extract respectively while gilbenclamide (5 mg/ml); a standard diabetic drug was also given to a specific group for 14 days. From the result, the leaf extract contained a higher concentration of flavonoids followed byphenols, ascorbic acid, lycopene and β-carotene. The extract displayed more potent reducing power ability with EC50 of 40 µg/ml compared to BHA (EC50 of 400µg/ml). The percentage DPPH radical scavenging activity of the extract was also higher with EC50 of 200µg/ml and increased with increase in concentration while BHA had EC50of 320µg/ml. The inhibition of lipid peroxidation also increased with increase in concentration with EC50 of 58µg/ml and comparable with BHA (EC50=60µg/ml). The effect of the plant extract on antioxidant enzyme activities was concentration-dependent. Administration of 100mg/kg of the plant extract resulted in a significant decrease (p<0.05) in serum MDA concentration, while 200 mg/kg of the extract caused a significant (p˂0.05) increase in superoxide dismutase (SOD) and catalase activities with a non-significant increase (p>0.05) in the serum level of MDA when compared with the diabetic untreated group. These findings suggest that ethanol leaf extract of Justicia carnea have antioxidant properties and could handle diabetes-induced oxidative stress.


2007 ◽  
Vol 2 (4) ◽  
pp. 538-546
Author(s):  
Anna Gumieniczek ◽  
Hanna Hopkała ◽  
Marcin Pruchniak

AbstractIn the present study, the induction of oxidative stress was examined in the testis of alloxan-induced diabetic rabbits. In addition, the protective effect of repaglinide, an oral anti-diabetic, at a dose of 1 mg daily was studied after four and eight weeks of the treatment. For these purposes, the levels of superoxide dismutase (Cu,Zn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione (GSH), ascorbic acid (AA), lipid peroxidation products (LPO) and protein carbonyl groups (PCG) were quantified. Hyperglycemia resulted in significant increases in the antioxidative enzymes, Cu, Zn-SOD, CAT, GSH-Px, and GSSG-R after four and eight weeks, respectively. There was also an increase in GSH level, and a decrease in the level of AA. These effects were accompanied by an elevation in testicular LPO levels and PCG levels. Repaglinide was found to normalize the activity of GSSG-R and levels of GSH and AA, and blunted the increased lipid peroxidation, however no decrease in PCG levels were observed. In conclusion, some oxidative changes provoked in the testis of rabbits by hyperglycemia, were found to be reduced with repaglinide treatment at therapeutic dose.


2007 ◽  
Vol 389 (7-8) ◽  
pp. 2167-2178 ◽  
Author(s):  
Susana Cuello ◽  
Sonia Ramos ◽  
Raquel Mateos ◽  
M. Angeles Martín ◽  
Yolanda Madrid ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 833 ◽  
Author(s):  
Sanghyeon Oh ◽  
Young Joo Kim ◽  
Eun Kyoung Lee ◽  
Sung Wook Park ◽  
Hyeong Gon Yu

Oxidative stress has been implicated as critical pathogenic factors contributing to the etiology of diabetic retinopathy and other retinal diseases. This study investigated antioxidative effect of ascorbic acid and astaxanthin on ARPE-19 cells within an oxidative stress model induced by common biological sources of reactive oxygen species (ROS). Hydrogen peroxide (H2O2) at concentrations of 0.1–0.8 mM and 20–100 mJ/cm2 of ultraviolet B (UVB) were treated to ARPE-19 cells. Cell viability and intracellular ROS level changes were measured. With the sublethal and lethal dose of each inducers, 0–750 μM of ascorbic acid and 0–40 μM of astaxanthin were treated to examine antioxidative effect on the model. Ascorbic acid at concentrations of 500 and 750 μM increased the cell viability not only in the UVB model but also in the H2O2 model, but 20 and 40 μM of astaxanthin only did so in the UVB model. The combination of ascorbic acid and astaxanthin showed better antioxidative effect compared to each drug alone, suggesting a synergistic effect.


2013 ◽  
Vol 04 (03) ◽  
pp. 292-297 ◽  
Author(s):  
Gaafar M Ishaq ◽  
Yusuf Saidu ◽  
Lawal S Bilbis ◽  
Suleiman A Muhammad ◽  
Nasir Jinjir ◽  
...  

ABSTRACT Background: Traumatic brain injury (TBI) is accompanied by substantial accumulation of biomarkers of oxidative stress and depletion of antioxidants reserve which initiate chain reactions that damage brain cells. The present study investigated the role of ascorbic acid and α-tocopherol on the severity and management of TBI in rats. Materials and Methods: Wistar rats were subjected to closed head injury using an accelerated impact device. Rats were administered 45 mg/kg and 60 mg/kg body weight of ascorbic acid, α-tocopherol or a combination of the two vitamins for 2 weeks pre- and post injury. Blood and brain tissue homogenates were analyzed for vitamin C, vitamin E, malondialdehyde, superoxide dismutase, and creatine kinase activities. Results: The results indicated that TBI caused significant (P < 0.05) decreased in vitamins C and E levels in the blood and brain tissue of TBI-untreated rats. The activities of superoxide dismutase in TBI rats were markedly reduced when compared with non traumatized control and showed a tendency to increased following supplementation with vitamins C and E. Supplementation of the vitamins significantly (P < 0.05) reduced malondialdehyde in the treatment groups compared with the TBI-untreated group. Conclusion: The study indicated that pre and post treatment with ascorbic acid and α-tocopherol reduced oxidative stress induced by brain injury and effectively reduced mortality rate in rats.


Sign in / Sign up

Export Citation Format

Share Document