scholarly journals MiR-541-3p suppresses gastric cancer via negative regulation of HSF1

2021 ◽  
Vol 20 (11) ◽  
pp. 2293-2298
Author(s):  
Zihan Zheng ◽  
Peng Zhou ◽  
Yangyang Xiao ◽  
Qian Liu ◽  
Tao Wan

Purpose: To explore the effects of miR-541-3P on the expression of heat shock transcription factor 1 (HSF1) in gastric cancer cells (GC).Methods: The MicroRNA Target Prediction Database was used to predict whether miR-541-3p interacts with HSF1. Interaction was assessed by dual-luciferase reporter assays. Furthermore, miR-541-3p mRNA levels in GC cell lines were determined by qRT-PCR. Human GC cell lines MKN45 and NCI-N87 were transfected with miR-541-3p mimic. Cell apoptosis, proliferation, invasion, and migration were evaluated using flow cytometry, apoptosis assays, Edu assays, CCK-8 assays, and transwell assays, respectively. Caspase-3, Bcl-2, and cleaved caspase-3 expression levels were determined by western blot.Results: Expression of miR-541-3p was significantly down-regulated in GC cells. Functionally, miR-541-3p mimic inhibited GC cell proliferation, migration, and invasion and induced apoptosis in vitro (p <0.01). Mechanistically, miR-541-3p interacted with HSF1 and inhibited its expression. Overexpression of HSF1 counteracted the effects of miR-541-3p mimic in GC cells.Conclusion: These results indicate that miR-541-3p suppresses the development of GC by targeting HSF1 and thus, is a possible strategy for for the management of GC.

2021 ◽  
Vol 11 (8) ◽  
pp. 1466-1476
Author(s):  
Xuli Wang ◽  
Aiping Wang

Circular RNAs (circRNAs) have been reported to participate in the molecular mechanism of human cancers. This study investigates the role of circRNA hsa_circ_0000515 in gastric cancer (GC) cells and the underlying mechanism associated with microRNA-615-5p (miR-615-5p). qRT-PCR analysis showed the upregulation of hsa_circ_0000515 and downregulation of miR-615-5p in GC cell lines. Loss-of-function experiments indicated that suppression of hsa_circ_0000515 inhibited cell proliferation, migration, and invasion. Dual-luciferase reporter assay highlighted that hsa_circ_0000515 was able to act as a ceRNA of miR-615-5p. Furthermore, hsa_circ_0000515 could interact with splicing factors and bind miR-615-5p to regulate progression of GC cells. Deficiency of miR-615-5p reverses the inhibitory roles of si-hsa_circ_0000515 on the proliferation, migration, and invasion of GC cells. The findings highlighted the promising uses of hsa_circ_0000515 as a likely novel target for gastric cancer treatment.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


Author(s):  
Chunsheng Li ◽  
Jingrong Dong ◽  
Zhenqi Han ◽  
Kai Zhang

MicroRNAs (miRNAs) are reportedly involved in gastric cancer development and progression. In particular, miR-219-5p has been reported to be a tumor-associated miRNA in human cancer. However, the role of miR-219-5p in gastric cancer remains unclear. In this study, we investigated for the first time the potential role and underlying mechanism of miR-219-5p in the proliferation, migration, and invasion of human gastric cancer cells. miR-219-5p was found to be markedly decreased in gastric cancer tissues and cell lines compared with adjacent tissues and normal gastric epithelial cells. miR-219-5p mimics or anti-miR-219-5p was transfected into gastric cancer cell lines to overexpress or suppress miR-219-5p expression, respectively. Results showed that miR-219-5p overexpression significantly decreased the proliferation, migration, and invasion of gastric cancer cells. Conversely, miR-219-5p suppression demonstrated a completely opposite effect. Bioinformatics and luciferase reporter assays indicated that miR-219-5p targeted the 3′-untranslated region of the liver receptor homolog-1 (LRH-1), a well-characterized oncogene. Furthermore, miR-219-5p inhibited the mRNA and protein levels of LRH-1. LRH-1 mRNA expression was inversely correlated with miR-219-5p expression in gastric cancer tissues. miR-219-5p overexpression significantly decreased the Wnt/β-catenin signaling pathway in gastric cancer cells. Additionally, LRH-1 restoration can markedly reverse miR-219-5p-mediated tumor suppressive effects. Our study suggests that miR-219-5p regulated the proliferation, migration, and invasion of human gastric cancer cells by suppressing LRH-1. miR-219-5p may be a potential target for gastric cancer therapy.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yingfeng Wei ◽  
Sheng Guo ◽  
Jianhua Tang ◽  
Jianjun Wen ◽  
Huifen Wang ◽  
...  

Abstract Background Gastric cancer (GC) remains one of the most common digestive malignancies worldwide and ranked third causes of cancer-related death. Mounting evidence has revealed that miRNAs exert critical regulatory roles in GC development. Methods Immunohistochemistry (IHC) and western blot assay were performed to determine the protein expression levels of neuropilin-1 (NRP1) and mRNA levels were confirmed by quantitative RT-PCR (qRT-PCR) in GC tissues. Kaplan–Meier analysis was performed to evaluate the prognostic value of NRP1 in GC. Knockdown of NRP1 was conducted to analyse its function in vitro and vivo. Luciferase reporter assay, western blot and qRT-qPCR were employed to identify the miRNAs which directly targeted NRP1. Furthermore, Bioinformatics analysis and experimental verification were used to explore the potential molecular mechanism and signalling pathway. Results In the current study, we revealed that NRP1 was highly expressed in GC tumor tissues and was associated with poor prognosis in GC patients. NRP1 knockdown inhibited GC cell growth, migration and invasion in vitro, while suppressed GC xenograft tumor development in vivo. Bioinformatics analysis predicted that miR-19b-3p down-regulated NRP1 expression by targeting its 3′-UTR. Functional assay demonstrated that miR-19b-3p inhibited GC cell growth, migration and invasion via negatively regulating NRP1. Overexpression NRP1 partially reversed the regulatory effect of miR-19b-3p. Moreover, we showed that miR-19b-3p/NRP1 axis regulated the epithelial-to-mesenchymal transition and focal adhesion in GC, which might contribute the GC development and progression. Conclusions Taken together, our findings suggest a regulatory network of miR-19b-3p/NRP1 in GC development. The miR-19b-3p/NRP1 axis might be further explored as a potential diagnostic and therapeutic target in GC.


2021 ◽  
Vol 49 (9) ◽  
pp. 030006052110331
Author(s):  
Shasha Liu ◽  
Yang Zhao ◽  
Huan Liu ◽  
Xing Zhao ◽  
Xingbin Shen

Objective Identifying novel biomarkers involved in the development of gastric cancer (GC) can provide potential therapeutic strategies and improve clinical prognosis. miR-301-3p and Cx43 are reportedly dysregulated in GC. miR-301-3p and Cx43 interaction, and their functions in GC progression, are still poorly understood. Methods The expression levels of miR-301-3p and Cx43 in GC tissues and cell lines with various differentiation degrees were evaluated by RT-qPCR. The interaction between miR-301-3p and Cx43 was assessed by dual-luciferase reporter assays. CCK8 and Transwell assays were employed to assess the effects of the miR-301-3p- Cx43 axis on GC cell proliferation, migration, and invasion. Results Cx43 was significantly downregulated in GC tissues and cell lines, while miR-301-3p expression was negatively correlated with Cx43 mRNA levels. The expression levels of Cx43 and miR-301-3p were closely associated with the differentiation, TNM stage, vascular invasion, and lymph node metastasis status of GC patients. Cx43 overexpression could suppress the proliferation, migration, and invasion of GC cells. Cx43 mRNA is a direct target of miR-301-3p, and transfection of an miR-301-3p mimic could reverse the inhibitory effects of Cx43. Conclusion The miR-301-3p- Cx43 axis is involved in the development and progression of GC by affecting the proliferation, migration, and invasion of GC cells.


2020 ◽  
Author(s):  
Wanxiang Qin ◽  
Ying Shi ◽  
Dan Zhu ◽  
Yaohua Chen ◽  
Yuping Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most frequent malignant digestive tumors and second fatal cancer. This study was to investigate whether lncRNA-H19 can regulate E2F3 expression through competitive binding to microRNA-194 (miR-194), thus regulating GC growth and metastasis. Methods: H19, miR-194, and E2F3 expression levels in GC tissues and cell lines were investigated using quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). Meanwhile, the mRNA levels of H19 and E2F3 in gastric cancer tissues were also analyzed through the GEPIA web tool. The binding condition of miR-194 with H19 and E2F3 was investigated using a dual-luciferase reporter gene assay. The regulatory effects of H19 on proliferative, migratory, and invasive abilities of AGS cells and SGC-7901 cells were detected by transwell assay and cell counting kit-8 (CCK-8). Genes involved in proliferation, migration, and invasion (PCNA, Vimentin, and N-cadherin) were determined using QRT-PCR and western blot. The regulatory interaction between H19 and miR-194, miR-194, and E2F3 were investigated using rescue experiments. Results: The results revealed that H19 was highly expressed in GC tissues and cell lines than those of controls. Downregulated H19 decreased the proliferation, migration, and invasion of AGS cells and SGC-7901 cells. H19 was demonstrated that being the molecular sponge of miR-194 in regulating the growth of the GC cells. The level of E2F3 expression was also found significantly higher in GC tissues and cell lines than those of controls. And then, the mimics of miR-194 inhibited the expression of E2F3 in the GC cells. CCK-8 assay showed decreased proliferative ability induced by miR-194 mimics were reversed by E2F3 overexpression. Transwell assays showed decreased migratory and invasive ability induced by miR-194 mimics were reversed by E2F3 overexpression. Conclusions: This study demonstrates that H19 promotes GC growth and metastasis by regulating E2F3 via competitive binding to miRNA-194.


2019 ◽  
Vol 47 (2) ◽  
pp. 926-935 ◽  
Author(s):  
Fang Wang

Objective MicroRNA-384 (miR-384) has been reported to function as a tumor suppressor in multiple cancers; however, its role in gastric cancer (GC) remains unclear. Methods We measured expression levels of miR-384 in GC cell lines and in a normal gastric cell line (GES-1). The association between miR-384 and the metadherin gene ( MTDH) was assessed by luciferase reporter assay and western blot. The effects of the miR-384/MTDH axis on GC cell behaviors were measured by CCK-8, wound-healing, and transwell invasion assays. Results miR-384 was significantly downregulated in GC cell lines compared with normal gastric cells. MTDH was identified as a direct target of miR-384 by bioinformatics analysis, luciferase assay, and western blot. Functional assays demonstrated that miR-384 inhibited GC cell proliferation, migration, and invasion through targeting MTDH. Conclusion These results reveal that miR-384 acts as a tumor suppressor in GC and suggest that the miR-384/MTDH axis may be a potential therapeutic target for GC.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2020 ◽  
Author(s):  
Wanxiang Qin ◽  
Ying Shi ◽  
Dan Zhu ◽  
Yaohua Chen ◽  
Yuping Li ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most frequent malignant digestive tumors and second fatal cancer. This study was to investigate whether lncRNA-H19 can regulate E2F3 expression through competitive binding to microRNA-194 (miR-194), thus regulating GC growth and metastasis. Methods H19, miR-194, and E2F3 expression levels in GC tissues and cell lines were investigated using quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR). Meanwhile, the mRNA levels of H19 and E2F3 in gastric cancer tissues were also analyzed through the GEPIA web tool. The binding condition of miR-194 with H19 and E2F3 was investigated using a dual-luciferase reporter gene assay. The regulatory effects of H19 on proliferative, migratory, and invasive abilities of AGS cells and SGC-7901 cells were detected by transwell assay and cell counting kit-8 (CCK-8). Genes involved in proliferation, migration, and invasion (PCNA, Vimentin, and N-cadherin) were determined using QRT-PCR and western blot. The regulatory interaction between H19 and miR-194, miR-194, and E2F3 were investigated using rescue experiments. Results The results revealed that H19 was highly expressed in GC tissues and cell lines than those of controls. Downregulated H19 decreased the proliferation, migration, and invasion of AGS cells and SGC-7901 cells. H19 was demonstrated that being the molecular sponge of miR-194 in regulating the growth of the GC cells. The level of E2F3 expression was also found significantly higher in GC tissues and cell lines than those of controls. And then, the mimics of miR-194 inhibited the expression of E2F3 in the GC cells. CCK-8 assay showed decreased proliferative ability induced by miR-194 mimics were reversed by E2F3 overexpression. Transwell assays showed decreased migratory and invasive ability induced by miR-194 mimics were reversed by E2F3 overexpression. Conclusions This study demonstrates that H19 promotes GC growth and metastasis by regulating E2F3 via competitive binding to miRNA-194.


2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Yuling Li ◽  
Shudong Chen ◽  
Zhengfei Shan ◽  
Liyan Bi ◽  
Shengqiang Yu ◽  
...  

We investigated the effect of miR-182-5p on the viability, proliferation, invasion, and migration ability of human gastric cells by regulating the expression of RAB27A. Real-time PCR assay was used to detect the expression of miR-182-5 and RAB27A in human gastric carcinoma tissues, para-carcinoma tissues, and different cell lines. Western blotting was also used to determine the RAB27A expression in both tissues and cell lines. We chose the HGC-27 cell line as experiment subject as it demonstrated the highest miR-182-5p level. HGC-27 cells were transfected with different vectors and the cell viability, mitosis, invasion, and migration ability were measured through MTT assay, flow cytometry (FCM) analysis, Transwell assay, and wound healing assay. In comparison with the normal tissues, miR-182-5p is expressed at a higher level in gastric cancer (GC) tissues, while RAB27A is expressed at a lower level in cancerous tissues. The down-regulation of miR-182-5p and up-regulation of RAB27A can significantly decrease the viability, migration, invasion, and mitosis of HGC-27 cells. The target relationship between miR-182-5p and RAb27A was confirmed through a dual-luciferase reporter gene assay and Western blot assay. miR-182-5p enhances the viability, mitosis, migration, and invasion of human GC cells by down-regulating RAB27A.


Sign in / Sign up

Export Citation Format

Share Document