scholarly journals Rapid screening and characterization of caffeic acid metabolites in rats by UHPLC-Q-TOF mass spectrometry

2022 ◽  
Vol 20 (2) ◽  
pp. 389-401
Author(s):  
Jiaqi Yuan ◽  
Yunting Wang ◽  
Shengquan Mi ◽  
Jiayu Zhang ◽  
Yaxuan Sun

Purpose: To determine the metabolism of caffeic acid in rats. Methods: Sprague-Dawley rats were intragastrically administered caffeic acid in saline suspension, and biological samples collected. After sample pretreatment by solid phase extraction, ultra-high performance liquid chromatography combined with quadrupole-time of flight mass spectrometry system (UHPLC-Q-TOF-MS/MS) was established to rapidly screen and characterize caffeic acid metabolites in rats. Waters HSS T3 UPLC chromatographic column (2.1 mm × 100 mm, 1.7 μm) was applied for the gradient elution with aqueous solution of formic acid (A)-acetonitrile (B). Mass spectral data for the biological samples in electrospray positive and negative ion modes were collected and analyzed by SCIEX OS 1.3 workstation. Results: Based on their precise molecular weights and multistage mass spectrometry cleavage information, caffeic acid and 21 metabolites in vivo were identified. The results demonstrate that the biotransformation of caffeic acid in vivo was mainly achieved via hydrogenation, hydroxylation, methylation, sulfonation, glucuronidation, acetylation, and composite reactions. Conclusion: The metabolites and metabolic pathways of caffeic acid in rats have been rapidly elucidated, and its potential pharmacodynamics forms have been clarified. This provides a valuable and meaningful reference for the study of caffeic acid metabolites, biological activities, and its medicinal material basis in vivo.

2003 ◽  
Vol 794 (1) ◽  
pp. 185-192 ◽  
Author(s):  
M.W.J van Hout ◽  
C.M Hofland ◽  
H.A.G Niederländer ◽  
A.P Bruins ◽  
R.A de Zeeuw ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Hsiu-Chuan Yen ◽  
Hsing-Ju Wei ◽  
Ting-Wei Chen

F2-isoprostanes (F2-IsoPs) are a gold marker of lipid peroxidationin vivo, whereas F4-neuroprostanes (F4-NPs) measured in cerebrospinal fluid (CSF) or brain tissue selectively indicate neuronal oxidative damage. Gas chromatography/negative-ion chemical-ionization mass spectrometry (GC/NICI-MS) is the most sensitive and robust method for quantifying these compounds, which is essential for CSF samples because abundance of these compounds in CSF is very low. The present study revealed potential interferences on the analysis of F2-IsoPs and F4-NPs in CSF by GC/NICI-MS due to the use of improper analytical methods that have been employed in the literature. First, simultaneous quantification of F2-IsoPs and F4-NPs in CSF samples processed for F4-NPs analysis could cause poor chromatographic separation and falsely higher F2-IsoPs values for CSF samples with high levels of F2-IsoPs and F4-NPs. Second, retention of unknown substances in GC columns from CSF samples during F4-NPs analysis and from plasma samples during F2-IsoPs analysis might interfere with F4-NPs analysis of subsequent runs, which could be solved by holding columns at a high temperature for a period of time after data acquisition. Therefore, these special issues should be taken into consideration when performing analysis of F2-IsoPs and F4-NPs in CSF to avoid misleading results.


2019 ◽  
Vol 40 (3) ◽  
pp. 135-146 ◽  
Author(s):  
Darren Allen ◽  
Brett McWhinney

The screening of biological samples for the presence of illicit or legal substances is an important frontline tool in both clinical and forensic toxicology. In the clinical setting, drug screening is a useful tool for the clinician in improving patient care and guiding treatment. Analytical approaches for the screening of drugs in biological samples are extensive and well documented, though many rapid screening techniques often lack appropriate sensitivity and specificity, requiring careful clinical interpretation. The continuous emergence of new psychoactive substances presents a considerable analytical challenge in maintaining up-to-date methods for the detection of relevant drugs. Adapting and validating methods for the detection of new substances can be a complicated and costly undertaking. There is also a considerable lag time between the emergence of new drugs and the release of commercial assays for detection. Quadrupole time-of-flight mass spectrometry (Q-TOF-MS) has gained considerable attention over the last decade as an analytical technique that is capable of meeting the challenges of a rapidly changing drug landscape. Exhibiting both high sensitivity and specificity in drug detection, Q-TOF-MS also allows methods to be rapidly updated for newly emerging psychoactive agents. The coupling of Q-TOF-MS with techniques such as liquid or gas chromatography can provide both rapid and comprehensive screening solutions that are gaining popularity in the clinical laboratory setting.


Sign in / Sign up

Export Citation Format

Share Document