Salmonella and the Sanitary Quality of Aquacultured Shrimp

2005 ◽  
Vol 68 (12) ◽  
pp. 2527-2532 ◽  
Author(s):  
BRETT KOONSE ◽  
WILLIAM BURKHARDT ◽  
STUART CHIRTEL ◽  
GEORGE P. HOSKIN

In this study, we examined the prevalence of Salmonella and coliform bacteria on shrimp aquaculture farms to develop guidelines or preventative measures for reducing Salmonella and fecal contamination on products harvested from these farms. The U.S. Food and Drug Administration, in conjunction with foreign government regulatory agencies, the aquaculture industry, and academia affiliates, analyzed 1,234 samples from 103 shrimp aquaculture farms representing six countries between July 2001 and June 2003 for fecal coliforms, Escherichia coli, and Salmonella. A significant relationship was found (P = 0.0342) between the log number of fecal bacteria and the probability that any given sample would contain Salmonella. The likelihood of any given sample containing Salmonella was increased by 1.2 times with each 10-fold increase in either fecal coliform or E. coli concentration. The statistical relationship between Salmonella concentration and that of both fecal coliforms and E. coli was highest in grow-out pond water (P = 0.0042 for fecal coliforms and P = 0.0021 for E. coli). The likelihood of finding Salmonella in grow-out pond water increased 2.7 times with each log unit increase in fecal coliform concentration and 3.0 times with each log unit increase in E. coli concentration. Salmonella is not part of the natural flora of the shrimp culture environment nor is it inherently present in shrimp grow-out ponds. The occurrence of Salmonella bacteria in shrimp from aquaculture operations is related to the concentration of fecal bacteria in the source and grow-out pond water.

2007 ◽  
Vol 73 (12) ◽  
pp. 3771-3778 ◽  
Author(s):  
Winfried B. Ksoll ◽  
Satoshi Ishii ◽  
Michael J. Sadowsky ◽  
Randall E. Hicks

ABSTRACT Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4 � 105 CFU cm−2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (≥92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.


1993 ◽  
Vol 39 (10) ◽  
pp. 973-977 ◽  
Author(s):  
Allen N. Hagler ◽  
Carlos A. Rosa ◽  
Paula B. Morais ◽  
Leda C. Mendonça-Hagler ◽  
Georgia M. O. Franco ◽  
...  

Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10 000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges–Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.Key words: yeasts, fecal coliforms, bromeliad waters, mangrove, Restinga.


1995 ◽  
Vol 31 (12) ◽  
pp. 239-248 ◽  
Author(s):  
Ana Emparanza-Knörr ◽  
Francisco Torrella

The Salmonella presence and the microbiological quality indicators, total and fecal coliforms and coliphages of E. coli C, have been studied in a overloaded wastewater lagoon system treating urban wastewatrers of the village of Guardamar del Segura (Alicante, Spain). Classical microbiological technology to detect salmonellae was used, including pre-enrichment, enrichment, selective media plating and biochemical and serological confirmation. Water was physicochemically characterized according to COD, SS, temperature, pH and dissolved oxygen. The selective migration step through Rappaport-Vassiliadis semisolid agar medium was essential for the consistent detection of Salmonella in the different lagoon effluents. Total and fecal coliform levels of up to 105-106 MPN/100 ml were detected in the final effluent. High coliphage concentrations of 103-104 pfu/ml were also found in the effluent waters. Salmonella was always detected in 100 ml samples and eventually reached an order of value of 103 MPN/100 ml. Total coliform reduction was higher in the anaerobic ponds whereas fecal coliforms were more efficiently eliminated in the facultative (mostly “anoxic”) lagoons. Coliphage reduction was higher in the facultative lagoons when compared to the anaerobic ponds. On many occasions, no reduction or eventual increment of the concentration of salmonellae was detected in the effluents from the anaerobic ponds compared to concentrations of the patohogen in the influent raw wasterwaters. The possibility exists for a capacity of Salmonella to multiply in the anoxic phase of the wastewater treatment, but the presence of microorganisms in raw sewage waters which could maskSalmonella detection with the enrichment methodology employed cannot be ruled out.


2002 ◽  
Vol 68 (4) ◽  
pp. 1631-1638 ◽  
Author(s):  
A. Leclercq ◽  
C. Wanegue ◽  
P. Baylac

ABSTRACT A 24-h direct plating method for fecal coliform enumeration with a resuscitation step (preincubation for 2 h at 37 ± 1°C and transfer to 44 ± 1°C for 22 h) using fecal coliform agar (FCA) was compared with the 24-h standardized violet red bile lactose agar (VRBL) method. FCA and VRBL have equivalent specificities and sensitivities, except for lactose-positive non-fecal coliforms such as Hafnia alvei, which could form typical colonies on FCA and VRBL. Recovery of cold-stressed Escherichia coli in mashed potatoes on FCA was about 1 log unit lower than that with VRBL. When the FCA method was compared with standard VRBL for enumeration of fecal coliforms, based on counting carried out on 170 different food samples, results were not significantly different (P > 0.05). Based on 203 typical identified colonies selected as found on VRBL and FCA, the latter medium appears to allow the enumeration of more true fecal coliforms and has higher performance in certain ways (specificity, sensitivity, and negative and positive predictive values) than VRBL. Most colonies clearly identified on both media were E. coli and H. alvei, a non-fecal coliform. Therefore, the replacement of fecal coliform enumeration by E. coli enumeration to estimate food sanitary quality should be recommended.


2016 ◽  
Vol 79 (10) ◽  
pp. 1789-1793 ◽  
Author(s):  
HIDEMI IZUMI ◽  
YUJI NAKATA ◽  
AYANO INOUE

ABSTRACT Chemical sanitizers may induce no injury (bacteria survive), sublethal injury (bacteria are injured), or lethal injury (bacteria die). The proportion of coliform bacteria that were injured sublethally by chlorine and fungicide mixed with agricultural water (pond water), which was used to dilute the pesticide solution, was evaluated using the thin agar layer (TAL) method. In pure cultures of Enterobacter cloacae, Escherichia coli, and E. coli O157:H7 (representing a human pathogen), the percentage of chlorine-injured cells was 69 to 77% for dilute electrolyzed water containing an available chlorine level of 2 ppm. When agricultural water was mixed with electrolyzed water, the percentage of injured coliforms in agricultural water was 75%. The isolation and identification of bacteria on TAL and selective media suggested that the chlorine stress caused injury to Enterobacter kobei. Of the four fungicide products tested, diluted to their recommended concentrations, Topsin-M, Sumilex, and Oxirane caused injury to coliform bacteria in pure cultures and in agricultural water following their mixture with each pesticide, whereas Streptomycin did not induce any injury to the bacteria. The percentage of injury was 45 to 97% for Topsin-M, 80 to 87% for Sumilex, and 50 to 97% for Oxirane. A comparison of the coliforms isolated from the pesticide solutions and then grown on either TAL or selective media indicated the possibility of fungicide-injured Rahnella aquatilis, Yersinia mollaretii, and E. coli. These results suggest the importance of selecting a suitable sanitizer and the necessity of adjusting the sanitizer concentration to a level that will kill the coliforms rather than cause sanitizer-induced cell injury that can result in the recovery of the coliforms.


2015 ◽  
Vol 78 (3) ◽  
pp. 567-572 ◽  
Author(s):  
ANURADHA GHOSH ◽  
LUDEK ZUREK

House flies are a common pest at food animal facilities, including cattle feedlots. Previously, house flies were shown to play an important role in the ecology of Escherichia coli O157:H7; house flies in cattle feedlots carried this zoonotic pathogen and were able to contaminate cattle through direct contact and/or by contamination of drinking water and feed. Because house flies aggregate in large numbers on fresh (≤6 h) steam-flaked corn (FSFC) used in cattle feed, the aim of this study was to assess FSFC in a cattle feedlot as a potentially important site of fecal coliform contamination by house flies. House flies and FSFC samples were collected, homogenized, and processed for culturing of fecal coliforms on membrane fecal coliform agar. Selected isolates were identified by 16S rRNA gene sequencing, and representative isolates from each phylogenetic group were genotyped by pulsed-field gel electrophoresis. Fecal coliforms were undetectable in FSFC shortly (0 h) after flaking; however, in summer, after 4 to 6 h, the concentrations of fecal coliforms ranged from 1.9 × 103 to 3.7 × 104 CFU/g FSFC (mean, 1.1 ± 3.0 × 104 CFU/g). House flies from FSFC carried between 7.6 × 102 and 4.1 × 106 CFU of fecal coliforms per fly (mean, 6.0 ± 2.3 × 105 CFU per fly). Fecal coliforms were represented by E. coli (85.1%), Klebsiella spp. (10.6%), and Citrobacter spp. (4.3%). Pulsed-field gel electrophoresis demonstrated clonal matches of E. coli and Klebsiella spp. between house flies and FSFC. In contrast, in winter and in the absence of house flies, the contamination of corn by fecal coliforms was significantly (~10-fold) lower. These results indicate that FSFC is an important site for bacterial contamination by flies and possible exchange of E. coli and other bacteria among house flies. Further research is needed to evaluate the potential use of screens or blowers to limit the access of house flies to FSFC and therefore their effectiveness in preventing bacterial contamination.


2004 ◽  
Vol 70 (6) ◽  
pp. 3535-3540 ◽  
Author(s):  
Cristina Garc�a-Aljaro ◽  
Maite Muniesa ◽  
Juan Jofre ◽  
Anicet R. Blanch

ABSTRACT Shiga toxin-producing Escherichia coli strains are human pathogens linked to hemorrhagic colitis and hemolytic uremic syndrome. The major virulence factors of these strains are Shiga toxins Stx1 and Stx2. The majority of the genes coding for these toxins are borne by bacteriophages. Free Stx2-encoding bacteriophages have been found in aquatic environments, but there is limited information about the lysogenic strains and bacteria present in the environment that are susceptible to phage infection. The aim of this work was to study the prevalence and the distribution of the stx 2 gene in coliform bacteria in sewage samples of different origins. The presence of the stx 2 gene was monitored every 2 weeks over a 1-year period in a municipal sewage treatment plant. A mean value of 102 genes/ml was observed without significant variation during the study period. This concentration was of the same order of magnitude in raw municipal sewage of various origins and in animal wastewater from several slaughterhouses. A total of 138 strains carrying the stx 2 gene were isolated by colony hybridization. This procedure detected approximately 1 gene-carrying colony per 1,000 fecal coliform colonies in municipal sewage and around 1 gene-carrying colony per 100 fecal coliform colonies in animal wastewaters. Most of the isolates belonged to E. coli serotypes other than E. coli O157, suggesting a low prevalence of strains of this serotype carrying the stx 2 gene in the wastewater studied.


1997 ◽  
Vol 43 (6) ◽  
pp. 583-588 ◽  
Author(s):  
J. J. Shirey ◽  
G. K. Bissonnette

The effect of decreased oxygen concentration during incubation of M-Endo medium on detection of coliforms from rural groundwater supplies was examined. Incubation oxygen concentrations of 0 (anaerobic GasPak), 4, 8, and 21% (atmospheric) were examined. Our findings point to several advantages of using anaerobic incubation for the isolation of coliforms: (i) higher verification rates with concomitant decreases in occurrence of false-positive coliforms; (ii) overall reduction in growth of nonsheen colonies; and (iii) reduction in colony size for nonsheen organisms, thereby minimizing crowding effects and facilitating enumeration of coliform colonies. However, these advantages were not sufficient to permit increased recovery of total coliforms as compared with standard aerobic incubation. In addition, the increased frequency of detecting false-negative coliforms during anaerobic incubation is a disadvantage to this method. While detection of total coliforms was reduced under conditions of anaerobiosis, the detection of fecal coliforms and (or) E. coli was not impeded.Key words: coliforms, anaerobiosis, groundwater, sheen formation.


2004 ◽  
Vol 50 (9) ◽  
pp. 115-120 ◽  
Author(s):  
Y.N. Qi ◽  
S. Gillow ◽  
D.S. Herson ◽  
S.K. Dentel

Fecal coliform bacteria are used as indicator organisms for the presence of pathogens. In sludges, it has often been assumed that the counts of fecal coliforms after digestion (where the sludges may also be called biosolids) are representative of the counts when the sludge is disposed or recycled, such as by land application. The possibility has been raised, however, that dewatering processes can lead to increased counts of fecal coliforms and, by inference, human pathogens. This paper presents data from previous studies of this possibility; the results were inconsistent but showed observable increases in fecal coliforms at one treatment plant. Additional studies were then performed at another treatment facility, which showed statistically significant increases in fecal coliform counts after dewatering and two days of aging. The increases exceeded two orders of magnitude and included two centrifuge types and two biosolids types. Artifacts of media type and enumeration method have been excluded, and shearing of the material by commercial blender did not produce the same effects.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 261-269 ◽  
Author(s):  
Koji Kashimada ◽  
Naoyuki Kamiko ◽  
Kazuo Yamamoto ◽  
Shinichiro Ohgaki

Photoreactivation of microorganisms following UV disinfection is one of the research topics of interest in assessing the performance of UV disinfection, because there is little consensus on how the visible light intensity relates to the photoreactivation rate and the maximum survival in wastewater treatment processes. Apparent photoreactivation by a fluorescent lamp was observed in case of indicator bacteria (heterotrophic bacteria, coliform bacteria, fecal coliforms) in raw sewage, but not E. coli B and E. coli K12 A/λ(F+). Inactivation of fecal coliform was observed simultaneously during photoreactivation process by sunlight. Dose rate at 360 nm wave length as visible light intensity showed that it was a useful indicator for assessing the photoreactivation rate and the maximum survival when photoreactivation took place by both fluorescent lamp and sunlight. The model for photoreactivation was developed. The photoreactivation rate increased with increasing visible light intensity at 360 nm. However, the maximum survival value may not be affected by visible light intensity.


Sign in / Sign up

Export Citation Format

Share Document