Disinfectant and Antimicrobial Susceptibility Profiles of the Big Six Non-O157 Shiga Toxin–Producing Escherichia coli Strains from Food Animals and Humans

2016 ◽  
Vol 79 (8) ◽  
pp. 1355-1370 ◽  
Author(s):  
ROSS C. BEIER ◽  
EELCO FRANZ ◽  
JAMES L. BONO ◽  
ROBERT E. MANDRELL ◽  
PINA M. FRATAMICO ◽  
...  

ABSTRACT The disinfectant and antimicrobial susceptibility profiles of 138 non-O157 Shiga toxin–producing Escherichia coli strains (STECs) from food animals and humans were determined. Antimicrobial resistance (AMR) was moderate (39.1% of strains) in response to 15 antimicrobial agents. Animal strains had a lower AMR prevalence (35.6%) than did human strains (43.9%) but a higher prevalence of the resistance profile GEN-KAN-TET. A decreasing prevalence of AMR was found among animal strains from serogroups O45 > O145 > O121 > O111 > O26 > O103 and among human strains from serogroups O145 > O103 > O26 > O111 > O121 > O45. One animal strain from serogroups O121 and O145 and one human strain from serogroup O26 had extensive drug resistance. A high prevalence of AMR in animal O45 and O121 strains and no resistance or a low prevalence of resistance in human strains from these serogroups suggests a source other than food animals for human exposure to these strains. Among the 24 disinfectants evaluated, all strains were susceptible to triclosan. Animal strains had a higher prevalence of resistance to chlorhexidine than did human strains. Both animal and human strains had a similar low prevalence of low-level benzalkonium chloride resistance, and animal and human strains had similar susceptibility profiles for most other disinfectants. Benzyldimethylammonium chlorides and C10AC were the primary active components in disinfectants DC&R and P-128, respectively, against non-O157 STECs. A disinfectant FS512 MIC ≥ 8 μg/ml was more prevalent among animal O121 strains (61.5%) than among human O121 strains (25%), which may also suggest a source of human exposure to STEC O121 other than food animals. Bacterial inhibition was not dependent solely on pH but was correlated with the presence of dissociated organic acid species and some undissociated acids.

2008 ◽  
Vol 54 (7) ◽  
pp. 588-593 ◽  
Author(s):  
Caroline P. Pigatto ◽  
Ruben P. Schocken-Iturrino ◽  
Emanuel M. Souza ◽  
Fábio O. Pedrosa ◽  
Larissa Comarella ◽  
...  

The presence of Shiga toxin-producing Escherichia coli (STEC) strains in feces samples of cattle was determined using the cytotoxicity assay on Vero cells and a screening PCR system to detect stx genes. The STEC isolates were serotyped, tested for antimicrobial susceptibility, and analyzed for virulence genes using multiplex PCR. The verocytotoxin-producing E. coli – reverse passive latex agglutination (VTEC–RPLA) assay was also used to detect Shiga toxin production. The frequency of cattle shedding STEC was 36%. The isolates belonged to 33 different serotypes, of which O10:H42, O98:H41, and O159:H21 had not previously been associated with STEC. The most frequent serotypes were ONT:H7 (10%), O22:H8 (7%), O22:H16 (7%), and ONT:H21 (7%). Most of the strains (96%) were susceptible to all antimicrobial agents tested. Shiga toxin was detected by the VTEC–RPLA assay in most (89%) of the STEC strains. The frequency of virulence markers was as follows: stx1, 10%; stx2, 43%; stx1 plus stx2, 47%; ehxA, 44%; eae, 1%; and saa, 38%. Several strains belong to serotypes associated with human disease, and most of them carried a stx2-type gene, suggesting that they represent a risk to human health. The screening PCR assay showed fewer false-negative results for STEC than the Vero-cell assay and is suitable for laboratory routine.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1423
Author(s):  
Nicola Mangieri ◽  
Roberto Foschino ◽  
Claudia Picozzi

Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.


Author(s):  
Sanjana Mukherjee ◽  
Heather M. Blankenship ◽  
Jose A. Rodrigues ◽  
Rebekah E. Mosci ◽  
James T. Rudrik ◽  
...  

Background: Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen that contributes to over 250,000 infections in the US each year. Because antibiotics are not recommended for STEC infections, resistance in STEC has not been widely researched despite an increased likelihood for the transfer of resistance gene from STEC to opportunistic pathogens residing within the same microbial community. Methods: Between 2001 and 2014, 969 STEC isolates were collected from Michigan patients. Serotyping and antibiotic susceptibility profiles to clinically relevant antibiotics were determined using disc diffusion, while epidemiological data was used to identify factors associated with resistance. Whole genome sequencing was used to examine genetic relatedness and identify genetic determinants and mechanisms of resistance in the non-O157 isolates. Results: Increasing frequencies of resistance to at least one antibiotic was observed over the 14 years (p=0.01). While the non-O157 serogroups were more commonly resistant than O157 (Odds Ratio: 2.4; 95% Confidence Interval:1.43-4.05), the frequency of ampicillin resistance among O157 isolates was significantly higher in Michigan compared to the national average (p=0.03). Genomic analysis of 321 non-O157 isolates uncovered 32 distinct antibiotic resistance genes (ARGs). Although mutations in genes encoding resistance to ciprofloxacin and ampicillin were detected in four isolates, most of the horizontally acquired ARGs conferred resistance to aminoglycosides, β-lactams, sulfonamides and/or tetracycline. Conclusions: This study provides insight into the mechanisms of resistance in a large collection of clinical non-O157 STEC isolates and demonstrates that antibiotic resistance among all STEC serogroups has increased over time, prompting the need for enhanced surveillance.


2019 ◽  
Vol 40 (1) ◽  
pp. 163 ◽  
Author(s):  
Leandro Parussolo ◽  
Ricardo Antônio Pilegi Sfaciotte ◽  
Karine Andrezza Dalmina ◽  
Fernanda Danielle Melo ◽  
Ubirajara Maciel Costa ◽  
...  

The serrano artisanal cheese is a typical product from South region of Brazil, which is produced by skilled cheesemakers using raw milk. The contamination of this food by Escherichia coli has a great impact on public health, since it could threat the consumers’ health. The study evaluated the presence of virulence genes, antimicrobial susceptibility profiles and bofilm-production ability of Escherichia coli isolates obtained from raw milk and artisanal cheese produced in Southern Brazil. A total of 117 isolates of E. coli were characterized by multiplex PCR to detect the following virulence genes: eae for enteropatogenic E. coli (EPEC), lt and st for enterotoxigenic E. coli (ETEC), stx for shiga toxin-producing E. coli (STEC), stx and eae for enterohemorrhagic E. coli (EHEC), ipaH for enteroinvasive E. coli (EIEC) and aggR for enteroaggregative E. coli (EAEC). In addition, antimicrobial susceptibility profile to 22 antimicrobial agents was also performed by disk diffusion method, and we searched for extended-spectrum beta-lactamases (ESBL) and/or carbapenemase- producing isolates. Isolates that were positive for ESBL and carbapenemase were further investigated for the presence of the genes: blaTEM, blaSHV, blaOXA, blaCTX-M, for ESBL and blaOXA-48 for carbapenemase. Further, isolates had their ability to form biofilms investigated by the red Congo agar method. Virulence genes of E. coli were identified in 21.37% of the tested isolates, which were classified as EPEC (the most prevalent pathotype) and ETEC or EAEC. Ten (8.55%) of the total studied E. coli isolates revealed a multidrug-resistant profile, since they were resistant to three or more antimicrobial classes; whereas four isolates (3.42%) were classified as ESBL-producers and showed the presence of blaTEM gene. None of the isolates exhibited carbapenemase activity nor did they carry carbapenemase genes. From the total of E. coli isolates, 79 (67.52%) were considered potential biofilm producers. These results address a serious public health issue, since artisanal cheeses pose a risk to consumers’ health, since may be sources of dissemination of diarrheogenic E. coli, that can cause from subclinical to severe and fatal infections in children and adults, and also emphasize the need to improve adaptations/adjustments in the manufacturing processes of these products.


2017 ◽  
Vol 80 (12) ◽  
pp. 2105-2111 ◽  
Author(s):  
Gavin Bailey ◽  
Long Huynh ◽  
Lachlan Govenlock ◽  
David Jordan ◽  
Ian Jenson

ABSTRACT Salmonella contamination of ground beef has been viewed as originating from the surface of carcasses. Recent studies have identified lymph nodes as a potential source of Salmonella contamination because these tissues play an active role in containment of pathogens in the live animal and because some lymph nodes are unavoidably present in manufacturing beef trimmings or primal cuts that may be incorporated into ground beef. A survey was conducted of the microbiological status of lymph nodes from Australian cattle at the time of slaughter to determine the prevalence of microbiological contamination. Sets of lymph nodes (n = 197), consisting of the superficial cervical (prescapular), prepectoral, axillary, presternal, popliteal, ischiatic, subiliac (precrural), coxalis, and iliofemoralis (deep inguinal), were collected from five geographically separated Australian abattoirs over a period of 14 months. Samples were tested for the presence of Salmonella spp. and Shiga toxin–producing Escherichia coli by BAX PCR assay. Aerobic plate count, E. coli, and coliforms were enumerated with a lower limit of detection of 80 CFU per node. The observed prevalence of Salmonella within peripheral lymph nodes was 0.48% (7 of 1,464). Two of the seven lymph nodes in which Salmonella organisms were detected came from the same animal. Grass-fed, grain-fed, and cull dairy cattle were all found to have detectable Salmonella in lymph nodes. All Salmonella detections occurred during cooler months of the year. No Shiga toxin–producing E. coli were detected. Aerobic microorganisms were detected above the limit of quantification in 3.2% of nodes (median count 2.24 log per node), and E. coli was detected in 0.8% of nodes (median count 3.05 log per node). The low prevalence of Salmonella and low concentration of aerobic microorganisms in Salmonella-positive lymph nodes of Australian cattle at the time of slaughter suggest that the likelihood of lymph nodes contributing significantly to the presence of Salmonella in ground beef is low.


2007 ◽  
Vol 135 (7) ◽  
pp. 1174-1183 ◽  
Author(s):  
A. E. HEUVELINK ◽  
S. M. VALKENBURGH ◽  
J. J. H. C. TILBURG ◽  
C. VAN HEERWAARDEN ◽  
J. T. M. ZWARTKRUIS-NAHUIS ◽  
...  

SUMMARYIn three successive years, we visited petting farms (n=132), care farms (n=91), and farmyard campsites (n=84), respectively, and completed a standard questionnaire with the objective of determining the hygienic status of these farms and describing hygiene measures implemented to reduce the risk of transmission of zoonotic agents from the animals to humans. For at least 85% of the farms, the overall impression of hygiene was recorded as good. However, more attention must be paid to: informing visitors on hygiene and handwashing, provision of handwashing facilities, and a footwear cleaning facility. Examination of samples of freshly voided faeces resulted in the detection of Shiga toxin-producingEscherichia coliO157 and/orSalmonellaspp. and/orCampylobacterspp. at almost two-thirds (64·9%) of the petting farms, and around half of the care farms (56·0%) and farmyard campsites (45·2%). These data reinforce the need for control measures for both public and private farms to reduce human exposure to livestock faeces and thus the risk of transmission of zoonotic diseases. Public awareness of the risk associated with handling animals or faecal material should be increased.


2016 ◽  
Vol 46 (3) ◽  
pp. 513-518 ◽  
Author(s):  
Rafael Antonio Casarin Penha Filho ◽  
Joseane Cristina Ferreira ◽  
Ana Maria Iba Kanashiro ◽  
Ana Lúcia da Costa Darini ◽  
Angelo Berchieri Junior

ABSTRACT: Salmonella Gallinarum (S. Gallinarum) and Salmonella Pullorum (S. Pullorum) are poultry host-specific, agents of fowl typhoid and pullorum disease, respectively. These biovars cause septicemic infections, resulting in high mortality. Outbreaks are frequently reported worldwide, causing losses due to the elimination of infected flocks and treatments. The use of antimicrobial agents is frequent in poultry farms to prevent or treat gastrointestinal infections. In the present research it was evaluated the antimicrobial susceptibility of 50 S. Gallinarum and S. Pullorum isolates, from outbreaks that occurred between 1987 to 1991 and 2006 to 2013. The comparison of the susceptibility profiles showed that all isolates were susceptible to β-lactams. All isolates from 1987-1991 were susceptible to all antibiotics tested except NAL and CIP (78%). The susceptibility profile of S. Gallinarum (2006 - 2013 period) was the following NAL (58%), CIP (63%), ENR (67%), TET (92%), FFC (96%) and SXT (96%). S. Pullorum isolates (2006 - 2013 period) showed the following susceptibility rates to NAL (65%), CIP (71%), ENR (94%) and TET (94%). All isolates were susceptible to β-lactams tested, however, resistance to quinolones and fluoroquinolones increased over time. Furthermore, low levels of resistance to other antibiotics were found in recent isolates, such as tetracyclines.


Author(s):  
Catherine A. Blunt ◽  
Moritz Van Vuuren ◽  
Jacqueline Picard

Successful treatment of canine pyoderma has become compromised owing to the development of antimicrobial resistance with accompanying recurrence of infection. Canine skin samples submitted to a veterinary diagnostic laboratory for microbiological culture and sensitivity between January 2007 and June 2010, from which Staphylococcus intermedius was isolated, were selected for this investigation. Antimicrobial resistance of S. intermedius was most prevalent with reference to ampicillin followed by resistance to tetracycline and then potentiated sulphonamides. In general, antimicrobial resistance was low and very few methicillin-resistant isolates were detected. Temporal trends were not noted, except for ampicillin, with isolates becoming more susceptible, and potentiated sulphonamides (co-trimoxazole), with isolates becoming more resistant. In general, both the Kirby–Bauer disc diffusion and broth dilution minimum inhibitory concentration tests yielded similar results for the antimicrobial agents tested. The main difference was evident in the over-estimation of resistance by the Kirby–Bauer test for ampicillin, co-trimoxazole, penicillin and doxycycline. Knowledge of trends in bacterial resistance is important for veterinarians when presented with canine pyoderma. Analysis of antimicrobial susceptibility profiles of S. intermedius isolated from canine pyodermas will guide veterinarians’ use of the most appropriate agent and encourage prudent use of antimicrobials in companion animals.


Sign in / Sign up

Export Citation Format

Share Document