scholarly journals Public farms: hygiene and zoonotic agents

2007 ◽  
Vol 135 (7) ◽  
pp. 1174-1183 ◽  
Author(s):  
A. E. HEUVELINK ◽  
S. M. VALKENBURGH ◽  
J. J. H. C. TILBURG ◽  
C. VAN HEERWAARDEN ◽  
J. T. M. ZWARTKRUIS-NAHUIS ◽  
...  

SUMMARYIn three successive years, we visited petting farms (n=132), care farms (n=91), and farmyard campsites (n=84), respectively, and completed a standard questionnaire with the objective of determining the hygienic status of these farms and describing hygiene measures implemented to reduce the risk of transmission of zoonotic agents from the animals to humans. For at least 85% of the farms, the overall impression of hygiene was recorded as good. However, more attention must be paid to: informing visitors on hygiene and handwashing, provision of handwashing facilities, and a footwear cleaning facility. Examination of samples of freshly voided faeces resulted in the detection of Shiga toxin-producingEscherichia coliO157 and/orSalmonellaspp. and/orCampylobacterspp. at almost two-thirds (64·9%) of the petting farms, and around half of the care farms (56·0%) and farmyard campsites (45·2%). These data reinforce the need for control measures for both public and private farms to reduce human exposure to livestock faeces and thus the risk of transmission of zoonotic diseases. Public awareness of the risk associated with handling animals or faecal material should be increased.

2019 ◽  
Vol 24 (16) ◽  
Author(s):  
Juli Treacy ◽  
Claire Jenkins ◽  
Karthik Paranthaman ◽  
Frieda Jorgensen ◽  
Doris Mueller-Doblies ◽  
...  

An outbreak of Shiga toxin-producing Escherichia coli (STEC) O157:H7 occurred on the Isle of Wight between August and October 2017. Of the seven cases linked to the outbreak, five were identified through the statutory notification process and two were identified through national surveillance of whole genome sequencing data. Enhanced surveillance questionnaires established a common link to a farm, and link to the likely food vehicle, raw drinking milk (RDM). Microbiological investigations, including PCR, identified the presence of STEC O157:H7 in samples of RDM. Analysis of core genome single nucleotide polymorphism (SNP) data of STEC O157:H7 from human stool specimens, animal faecal samples and RDM demonstrated a one SNP difference between isolates, and therefore close genetic relatedness. Control measures that were put in place included suspension of sales and recall of RDM, as well as restrictions on public access to parts of the farm. Successful integration of traditional epidemiological surveillance and advanced laboratory methods for the detection and characterisation of STEC O157:H7 from human, animal and environmental samples enabled prompt identification of the outbreak vehicle and provided evidence to support the outbreak control team’s decision-making, leading to implementation of effective control measures in a timely manner.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 587
Author(s):  
Momna Rubab ◽  
Deog-Hwan Oh

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen that causes several gastrointestinal ailments in humans across the world. STEC’s ability to cause ailment is attributed to the presence of a broad range of known and putative virulence factors (VFs) including those that encode Shiga toxins. A total of 51 E. coli strains belonging to serogroups O26, O45, O103, O104, O113, O121, O145, and O157 were tested for the presence of nine VFs via PCR and for their susceptibility to 17 frequently used antibiotics using the disc diffusion method. The isolates belonged to eight different serotypes, including eight O serogroups and 12 H types. The frequency of the presence of key VFs were stx1 (76.47%), stx2 (86.27%), eae (100%), ehxA (98.03%), nleA (100%), ureC (94.11%), iha (96.07%), subA (9.80%), and saa (94.11%) in the E. coli strains. All E. coli strains carried seven or more distinct VFs and, among these, four isolates harbored all tested VFs. In addition, all E. coli strains had a high degree of antibiotic resistance and were multidrug resistant (MDR). These results show a high incidence frequency of VFs and heterogeneity of VFs and MDR profiles of E. coli strains. Moreover, half of the E. coli isolates (74.5%) were resistant to > 9 classes of antibiotics (more than 50% of the tested antibiotics). Thus, our findings highlight the importance of appropriate epidemiological and microbiological surveillance and control measures to prevent STEC disease in humans worldwide.


2016 ◽  
Vol 79 (8) ◽  
pp. 1355-1370 ◽  
Author(s):  
ROSS C. BEIER ◽  
EELCO FRANZ ◽  
JAMES L. BONO ◽  
ROBERT E. MANDRELL ◽  
PINA M. FRATAMICO ◽  
...  

ABSTRACT The disinfectant and antimicrobial susceptibility profiles of 138 non-O157 Shiga toxin–producing Escherichia coli strains (STECs) from food animals and humans were determined. Antimicrobial resistance (AMR) was moderate (39.1% of strains) in response to 15 antimicrobial agents. Animal strains had a lower AMR prevalence (35.6%) than did human strains (43.9%) but a higher prevalence of the resistance profile GEN-KAN-TET. A decreasing prevalence of AMR was found among animal strains from serogroups O45 > O145 > O121 > O111 > O26 > O103 and among human strains from serogroups O145 > O103 > O26 > O111 > O121 > O45. One animal strain from serogroups O121 and O145 and one human strain from serogroup O26 had extensive drug resistance. A high prevalence of AMR in animal O45 and O121 strains and no resistance or a low prevalence of resistance in human strains from these serogroups suggests a source other than food animals for human exposure to these strains. Among the 24 disinfectants evaluated, all strains were susceptible to triclosan. Animal strains had a higher prevalence of resistance to chlorhexidine than did human strains. Both animal and human strains had a similar low prevalence of low-level benzalkonium chloride resistance, and animal and human strains had similar susceptibility profiles for most other disinfectants. Benzyldimethylammonium chlorides and C10AC were the primary active components in disinfectants DC&R and P-128, respectively, against non-O157 STECs. A disinfectant FS512 MIC ≥ 8 μg/ml was more prevalent among animal O121 strains (61.5%) than among human O121 strains (25%), which may also suggest a source of human exposure to STEC O121 other than food animals. Bacterial inhibition was not dependent solely on pH but was correlated with the presence of dissociated organic acid species and some undissociated acids.


2021 ◽  
Vol 47 (1) ◽  
pp. 11-16
Author(s):  
Eva Boyd ◽  
Aljosa Trmcic ◽  
Marsha Taylor ◽  
Sion Shyng ◽  
Paul Hasselback ◽  
...  

Background: In 2018, a Shiga toxin–producing Escherichia coli O121 outbreak that affected seven individuals was associated with raw milk Gouda-like cheese produced in British Columbia, Canada. Objectives: To describe the E. coli O121 outbreak investigation and recommend greater control measures for raw milk Gouda-like cheese. Methods: Cases of E. coli O121 were identified through laboratory testing results and epidemiologic surveillance data. The cases were interviewed on exposures of interest, which were analyzed against Foodbook Report values for British Columbia. Environmental inspection of the dairy plant and the cheese products was conducted to ascertain a source of contamination. Whole genome multi-locus sequence typing (wgMLST) was performed on all positive E. coli O121 clinical and food isolates at the provincial laboratory. Results: Four out of the seven cases consumed the same raw milk Gouda-like cheese between August and October 2018. The implicated cheese was aged longer than the required minimum of 60 days, and no production deficiencies were noted. One sample of the implicated cheese tested positive for E. coli O121. The seven clinical isolates and one cheese isolate matched by wgMLST within 6.5 alleles. Conclusion: Raw milk Gouda and Gouda-like cheese has been implicated in three previous Shiga toxin–producing E. coli outbreaks in North America. It was recommended product labelling to increase consumer awareness and thermization of milk to decrease the risk of illness associated with raw milk Gouda and Gouda-like cheese.


Infectio ◽  
2017 ◽  
Vol 21 (2) ◽  
Author(s):  
Eman Fathi Sharafa ◽  
Iman I. Shabanaa

Shiga toxin-producing Escherichia coli (STEC) strains have emerged as important foodborne pathogens of global public health concern, causing life-threatening diseases. Sheep and their products have been documented as important reservoirs for STECs, especially E. coli O157. The aim of this study was to investigate STECs from diarrheal human and sheep in Al-Madinah Al-Munawarah, Saudi Arabia. Fecal samples were collected between June and August, 2015 from diarrheal humans (n = 134) and sheep (n = 87). Presumptive E. coli human-and sheep-isolated strains were identified for their serotypes, the associated virulence genes (Shiga toxin [stx1 , stx2 ], haemolysin [ehxA] and intimin [eae]) by polymerase chain reaction and their susceptibility to antibiotics. Pulsed-field gel electrophoresis (PFGE) was used to demonstrate the genetic relatedness between Serotype O157:H7 human- and sheep-isolated strains. Forty eight (48/221; 21.7%) STECs were recovered from both human and sheep, their serotypes were as follows: O157:H7, O26:H11, O157:HNM, O26:HNM, O128:H2, O48:HNM, O111:HNM and OUT:HUT. Various virulence profiles and multiple antibiotic resistance were observed among the isolates. Twenty eight O157:H7 serotypes (17 human isolates and 11 sheep isolates) were identified in 13 PFGE pulsotypes, where human and sheep isolates were highly related. PFGE banding profiles together with serotypes and genotypes afford proof that human and sheep can be colonized and infected with similar E. coli O157:H7 strains. Our findings highlight the importance of epidemiological and microbiological surveillance of STECs; as well as the development of control measures to decrease risks associated with zoonotic O157:H7.


2016 ◽  
Vol 144 (12) ◽  
pp. 2494-2500 ◽  
Author(s):  
S. ROWELL ◽  
C. KING ◽  
C. JENKINS ◽  
T. J. DALLMAN ◽  
V. DECRAENE ◽  
...  

SUMMARYFifteen confirmed cases and 15 possible cases of Shiga toxin-producing Escherichia coli (STEC) O157 phage type 21/28 were linked to direct contact with lambs at a ‘Lambing Live’ event in the North West of England between 29 March and 21 April 2014. Twenty-one (70%) of the cases were female, 23 (77%) were children aged <16 years, of whom 14 (46%) were in the 0–5 years age group. Five children developed haemolytic uraemic syndrome. Multilocus variable number tandem repeat analysis (MLVA) profiles on 14 human cases were indistinguishable, and 6/10 animal isolates had a MLVA profile identical to the outbreak profile. Whole-genome sequencing analysis revealed that all isolates, both human and animal, fell within a 5-single nucleotide polymorphism cluster indicating the isolates belonged to the same point source. On inspection of the premises, extensive and uncontrolled physical contact between visitors and animals was occuring within the animal pens and during bottle-feeding. Public areas were visibly contaminated with animal faeces. Information to visitors, and the infection control awareness demonstrated by staff, was inadequate. Managing the risk to visitors of STEC O157 infection at animal petting events and open farms requires implementation of stringent control measures by the operator, as outlined in the industry code of practice. Enforcement action is sometimes required to prevent high-risk activities taking place at both permanent and temporary attractions.


Author(s):  
Mohamed Sabry Abd Elraheam Elsyaed ◽  
Mary Mounir

Aims: A great concern directed to non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes due to their public health importance. Detecting the existence, antimicrobial profiles, and virulence repertoire of different STEC serotypes from animals essential for human food are important. Study Design: This study aimed to investigate the presence of STEC in different hosts, the distribution pattern of stx1, stx2, eaeA, and hlyA genes encoding Shiga toxins 1 and 2, intimin, and enterohemolysin, respectively, and the antimicrobial resistance of the detected serotypes. Results: A total of 75 samples were collected, 20 fecal samples from broilers, 15 fecal samples from ducks, 20 beef samples, and 20 human urine samples. Escherichia coli was detected at a rate of 60/75 (80%) distributed as;17 (85%), 8 (53.3%), 15(75%), and 20 (100%) from broilers, ducks, human urine, and beef samples, respectively. There was a significant difference between the isolation rates of E. coli from different sources with p<0.05. The prevalent serotypes were O78, O2:H6, O15:H2, and O26: H1. The frequency of stx1 gene was 56/60 (93.3%), stx2 gene was 55/60 (91.6%), the eaeA gene was 35/60 (58.3%), and hlyA gene was 26/60 (43.3%). The most effective antimicrobials were amoxicillin/clavulanic acid and ampicillin with the efficacy of 52/60 (86.6%) for each, while the efficacy of chloramphenicol and doxycycline was 5/60 (8.3%) and 44/60 (73.3%), respectively. Conclusion: The high frequency of non-O157 Shiga toxin-Producing Escherichia coli from different samples at Sadat City, high prevalence of virulence factors and resistance to chloramphenicol and doxycycline will help in monitoring the distribution of virulent serotypes and contribute to the establishment of control measures to reduce the spread of infection.


2018 ◽  
Vol 147 ◽  
Author(s):  
K. De Rauw ◽  
R. Buyl ◽  
S. Jacquinet ◽  
D. Piérard

Abstract In Belgium, it is mandatory to report Shiga toxin-producing Escherichia coli (STEC) infections to the health inspection authorities. To facilitate the decision making regarding infection control measures, information about the risk factors for the development of the haemolytic uremic syndrome (HUS) can be helpful. We performed statistical analyses on a dataset of 411 Belgian STEC strains. Demographic and clinical patient characteristics as well as phenotypical and genotypical STEC strain characteristics were taken into account. Multivariate logistic regression models indicated that age categories ⩽5, 6–12 and ⩾75; the stx2 gene; and the eae gene were significant HUS development risk determinants. The stx2a subtype had the highest risk (OR 29.6, 95% CI 7.0–125.1), while all stx1 subtypes encompassed a significant lower risk (OR 0.3, 95% CI 0.1–0.5). Presence of the stx1 gene without stx2 encompassed a lower risk than the combined presence of stx1 and stx2, or stx2 solely. Based on these results, we propose a new virulence typing algorithm that will enable the National Reference Centre to provide the physicians and health inspection authorities with a risk classification for the development of HUS. We believe this will contribute to a more efficient STEC infection control management in Belgium.


2021 ◽  
Vol 11 ◽  
Author(s):  
Claudia Cortimiglia ◽  
Maria Francesca Borney ◽  
Daniela Bassi ◽  
Pier Sandro Cocconcelli

Shiga-toxin-producing Escherichia coli (STEC) represents a significant cause of foodborne disease. In the last years, an increasing number of STEC infections associated with the consumption of raw and pasteurized milk cheese have been reported, contributing to raise the public awareness. The aim of this study is to evaluate the main genomic features of STEC strains isolated from a semi-hard raw milk cheese, focusing on their pathogenic potential. The analysis of 75 cheese samples collected during the period between April 2019 and January 2020 led to the isolation of seven strains from four stx-positive enrichment. The genome investigation evidenced the persistence of two serotypes, O174:H2 and O116:H48. All strains carried at least one stx gene and were negative for eae gene. The virulence gene pattern was homogeneous among the serogroup/ST and included adherence factors (lpfA, iha, ompT, papC, saa, sab, hra, and hes), enterohemolysin (ehxA), serum resistance (iss, tra), cytotoxin-encoding genes like epeA and espP, and the Locus of Adhesion and Autoaggregation Pathogenicity Islands (LAA PAIs) typically found in Locus of Enterocyte Effacement (LEE)-negative STEC. Genome plasticity indicators, namely, prophagic sequences carrying stx genes and plasmid replicons, were detected, leading to the possibility to share virulence determinants with other strains. Overall, our work adds new knowledge on STEC monitoring in raw milk dairy products, underlining the fundamental role of whole genome sequencing (WGS) for typing these unknown isolates. Since, up to now, some details about STEC pathogenesis mechanism is lacking, the continuous monitoring in order to protect human health and increase knowledge about STEC genetic features becomes essential.


2019 ◽  
Vol 82 (11) ◽  
pp. 1950-1958 ◽  
Author(s):  
ERICA KINTZ ◽  
LISA BYRNE ◽  
CLAIRE JENKINS ◽  
NOEL McCARTHY ◽  
ROBERTO VIVANCOS ◽  
...  

ABSTRACT Shiga toxin–producing Escherichia coli (STEC) outbreaks involving ready-to-eat salad products have been described in the scientific literature since 1995. These products typically do not undergo a definitive control step such as cooking to eliminate pathogens. To reduce the number of STEC infections from salad products, efforts will need to focus on preventing and reducing contamination throughout the food chain. We performed a systematic review of STEC outbreaks involving sprouted seeds, salad, or leafy green products to determine whether there were recurrent features, such as availability of microbiological evidence or identification of the contamination event, which may inform future investigations and prevention and control strategies. Thirty-five STEC outbreaks linked to contaminated leafy greens were identified for inclusion. The outbreaks occurred from 1995 to 2018 and ranged from 8 to more than 8,500 cases. Detection of STEC in the food product was rare (4 of 35 outbreaks). For the remaining outbreaks, the determination of leafy greens as the source of the outbreak mainly relied on analytical epidemiology (20 of 35) or descriptive evidence (11 of 35). The traceback investigation in 21 of 32 outbreaks was not able to identify possible routes leading to where the STEC bacteria came from or how the leaves were contaminated. Investigations in eight outbreaks found poor practice during processing that may have contributed to the outbreak, such as insufficient postharvest disinfection of the product. Six outbreak investigations were able to identify the outbreak strain in animal feces near the growing fields; two of these were also able to find it in irrigation water on the farms, providing a likely route of contamination. These results highlight the limitations of relying on microbiological confirmation as a basis to initiate investigations of upstream production to understand the source of contamination. This review also demonstrates the importance of, and difficulties associated with, food-chain traceback studies to inform control measures and future prevention.


Sign in / Sign up

Export Citation Format

Share Document