scholarly journals A simple method to produce fragment seedstock for aquaculture of Pterocladiella capillacea (Gelidiales, Rhodophyta)

ALGAE ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 327-332
Author(s):  
Chang Geun Choi Choi ◽  
Ju Il Lee Lee ◽  
Il Ki Hwang ◽  
Sung Min Boo

Raw material of gelidioid red algae yielding high-quality agar has been in short supply due to overharvesting, but in situ farming of gelidioids has not been practical due to their slow growth. To produce vegetative seedstock of a cosmopolitan species, Pterocladiella capillacea, we investigated the number and length of regenerated branches arising from sectioned fragments during 3 weeks of laboratory culture at 10, 15, 20, and 25°C. All sectioned fragments formed axis-like branches mostly from the upper cut edge and stolon-like branches mostly from the lower cut edge, showing a high capacity of regeneration and intrinsic bipolarity. At 20°C, the number of regenerated branches increased to 2.74 ± 1.29 on the upper cut edge and 4.26 ± 2.66 on the lower cut edge. Our study reveals that the use of fragments bearing regenerated branches as seedstock can be a simple method to initiate fast propagation for mass cultivation in the sea or outdoor tank.

2014 ◽  
Vol 50 (87) ◽  
pp. 13231-13234 ◽  
Author(s):  
Lixiao Miao ◽  
Weikun Wang ◽  
Keguo Yuan ◽  
Yusheng Yang ◽  
Anbang Wang

A high capacity per area (>7 mA h cm−2) sulfur cathode with high sulfur loading (6.7 mg cm−2) was fabricated by a simple method. An ingenuity method is adopted which can improve performance of Li–S battery by forming in-situ polysulfide ions.


2021 ◽  
Vol 8 (4) ◽  
pp. 8-14
Author(s):  
Sayed Waqar Azhar ◽  
Fujun Xu ◽  
Yiping Qiu

In recent decades, rational management of agricultural residues presented a new approach for extraction, characterization, and utilization of cellulose nanofibers (CNF). In this context, the valorization of flaxseed fibers, providing an annual yield of millions of metric tons, as an abundant sustainable fiber source, was carried out. The cleaned and ground raw material was delignified and bleached, followed by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO oxidization along with mechanical homogenization. The resulting extracted cellulose and cellulose nanofibers were characterized by various analytical methods. The overall yield of CNF based on the raw material was 31.2% ± 1.5%. This study explored a simple method for converting flaxseed fibers to fluorescent, high quality, nano-sized cellulosic precursors for novel applications in pharmaceutical and bio-composite applications.


2017 ◽  
Author(s):  
B. Rodney Jarvis ◽  
Brian G. Condie

AbstractGenerating RNA riboprobes for in situ hybridization generally requires the use of plasmids, which must be grown in bacteria, isolated, purified, and linearized prior to in vitro transcription. Here we report a simple method for generating DNA templates for the in vitro transcription of RNA probes from synthetic DNA (IDT gBlocks). Each synthetic DNA template contains sequences corresponding to the target mRNA flanked by bacteriophage promoters. Amplification of the template by a single round of PCR and subsequent in vitro transcription results in production of high quality RNA probes for in situ hybridization.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


Author(s):  
Yoshichika Bando ◽  
Takahito Terashima ◽  
Kenji Iijima ◽  
Kazunuki Yamamoto ◽  
Kazuto Hirata ◽  
...  

The high quality thin films of high-Tc superconducting oxide are necessary for elucidating the superconducting mechanism and for device application. The recent trend in the preparation of high-Tc films has been toward “in-situ” growth of the superconducting phase at relatively low temperatures. The purpose of “in-situ” growth is to attain surface smoothness suitable for fabricating film devices but also to obtain high quality film. We present the investigation on the initial growth manner of YBCO by in-situ reflective high energy electron diffraction (RHEED) technique and on the structural and superconducting properties of the resulting ultrathin films below 100Å. The epitaxial films have been grown on (100) plane of MgO and SrTiO, heated below 650°C by activated reactive evaporation. The in-situ RHEED observation and the intensity measurement was carried out during deposition of YBCO on the substrate at 650°C. The deposition rate was 0.8Å/s. Fig. 1 shows the RHEED patterns at every stage of deposition of YBCO on MgO(100). All the patterns exhibit the sharp streaks, indicating that the film surface is atomically smooth and the growth manner is layer-by-layer.


2020 ◽  
Author(s):  
Aidan Kelly ◽  
Peng-Jui (Ruby) Chen ◽  
Jenna Klubnick ◽  
Daniel J. Blair ◽  
Martin D. Burke

<div> <div> <div> <p>Existing methods for making MIDA boronates require harsh conditions and complex procedures to achieve dehydration. Here we disclose that a pre-dried form of MIDA, MIDA anhydride, acts as both a source of the MIDA ligand and an in situ desiccant to enable a mild and simple MIDA boronate synthesis procedure. This method expands the range of sensitive boronic acids that can be converted into their MIDA boronate counterparts. Further utilizing unique properties of MIDA boronates, we have developed a MIDA Boronate Maker Kit which enables the direct preparation and purification of MIDA boronates from boronic acids using only heating and centrifuge equipment that is widely available in labs that do not specialize in organic synthesis. </p> </div> </div> </div>


Author(s):  
I. A. Ilina ◽  
I. A. Machneva ◽  
E. S. Bakun

  The article is devoted to the study of the chemical composition, physical and thermal-pfysical characteristics of damp apple pomaces and the identifying patterns of influence of drying temperature the functional composition and gel-forming ability of pectin. The research is aimed at obtaining initial data for the subsequent calculation of the main technological, hydro-mechanical, thermal, structural and economic characteristics of devices for drying the plant raw materials, ensuring the environmental safety and high quality of pectin-containing raw materials, the reducing heat and energy costs. As a result of the study of the thermal characteristics of apple pomaces, the critical points (temperature conductivity – 16.5 x 10-8 m2/s, thermal conductivity – 0.28 W/m K, heat capacity – 1627 j/(kg K)) at a humidity of 56 % are determined, which characterizing the transition from the extraction of weakly bound moisture to the extraction of moisture with strong bonds (colloidal, adsorption). It was found that the pomaces obtained from apples of late ripening have a higher content of solids (21-23 %), soluble pectin and protopectin (2.5-4.5 %). Dried pomaces obtained from apple varieties of late ripening contain up to 25 % pectin, which allow us to recommend them as a source of raw materials for the production of pectin. The optimum modes of preliminary washing of raw materials are offered, allowing to the remove the ballast substances as much as possible. It is established that when the drying temperature increases, the destructive processes are catalyzed: the strength of the pectin jelly and the uronide component and the degree of pectin esterification are reduced. The optimum drying temperature of damp apple pomaces is 80 0C, at which the quality of pectin extracted from the dried raw materials is maintained as much as possible. It is shown that the most effective for the pectin production is a fraction with a particle size of 3-5 mm, which allow us to extract up to 71 % of pectin from raw materials.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shen Wang ◽  
Hongbo Xu ◽  
Tingting Hao ◽  
Peiyuan Wang ◽  
Xiang Zhang ◽  
...  

AbstractElectrochromic supercapacitors (ESCs) are appealing for smart electronic device applications due to their advantages of dual-function integration. Unfortunately, the synchronous dual-function evaluation and the essential reaction mechanism are ambiguous. Herein, we constructed a 3D WO3-x nanowire networks/fluorine-doped tin oxide (WO3-x NWNs/FTO) bifunctional electrode for ESCs by a solvothermal self-crystal seeding method. The synchronous correspondence relationship between the optical and electrochemical performances of the WO3-x NWNs/FTO electrode was explored using an operando spectra-electrochemical characterization method. It reveals an excellent areal capacity of 57.57 mF cm−2 with a high corresponding optical modulation (ΔT) of 85.05% and high optical-electrochemical cycling stability. Furthermore, the synergistic reaction mechanism between the Al3+ ion intercalation behavior and the surface pseudocapacitance reaction during electrochemical cycling is revealed utilizing in situ X-ray diffraction. Based on these results, an ESC device was constructed by pairing WO3-x/FTO as the cathode with V2O5 nanoflowers/FTO (V2O5 NFs/FTO) as the anode, which simultaneously deliver high capacity and large optical modulation. Moreover, the energy storage level of the ESC device could be visually monitored by rapid and reversible color transitions in real time. This work provides a promising pathway to developing multi-functional integrated smart supercapacitors.


2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


Sign in / Sign up

Export Citation Format

Share Document