scholarly journals An Image Detection Method Based on Parameter Optimization of Support Vector Machine

Author(s):  
Zhanshen Feng

With the progress and development of multimedia image processing technology, and the rapid growth of image data, how to efficiently extract the interesting and valuable information from the huge image data, and effectively filter out the redundant data, these have become an urgent problem in the field of image processing and computer vision. In recent years, as one of the important branches of computer vision, image detection can assist and improve a series of visual processing tasks. It has been widely used in many fields, such as scene classification, visual tracking, object redirection, semantic segmentation and so on. Intelligent algorithms have strong non-linear mapping capability, data processing capacity and generalization ability. Support vector machine (SVM) by using the structural risk minimization principle constructs the optimal classification hyper-plane in the attribute space to make the classifier get the global optimum and has the expected risk meet a certain upper bound at a certain probability in the entire sample space. This paper combines SVM and artificial fish swarm algorithm (AFSA) for parameter optimization, builds AFSA-SVM classification model to achieve the intelligent identification of image features, and provides reliable technological means to accelerate sensing technology. The experiment result proves that AFSA-SVM has better classification accuracy and indicates that the algorithm of this paper can effectively realize the intelligent identification of image features.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 846
Author(s):  
Ilseok Noh ◽  
Hae-Won Doh ◽  
Soo-Ock Kim ◽  
Su-Hyun Kim ◽  
Seoleun Shin ◽  
...  

Spring frosts damage crops that have weakened freezing resistance after germination. We developed a machine learning (ML)-based frost-classification model and optimized it for orchard farming environments. First, logistic regression, decision tree, random forest, and support vector machine models were trained using balanced Korea Meteorological Administration (KMA) Automated Synoptic Observing System (ASOS) frost observation data for March from the last 10 years (2008–2017). Random forest and support vector machine models showed good classification performance and were selected as the main techniques, which were optimized for orchard fields based on initial frost occurrence times. The training period was then extended to March–April for 20 years (2000–2019). Finally, the model was applied to the KMA ASOS frost observation data from March to April 2020, which were not used in the previous steps, and RGB data were extracted by digital cameras installed in an orchard in Gyeonggi-do. The developed model successfully classified 117 of 139 frost observation cases from the domestic ASOS data and 35 of 37 orchard camera observations. The assumption of the initial frost occurrence time for training helped the most in improving the frost-classification model. These results clearly indicate that the frost-classification model using ML has applicable accuracy in orchard farming.


2018 ◽  
Vol 61 (2) ◽  
pp. 469-479 ◽  
Author(s):  
Chao Zhou ◽  
Chuanheng Sun ◽  
Kai Lin ◽  
Daming Xu ◽  
Qiang Guo ◽  
...  

Abstract. In aquaculture, almost all images collected of an aquaculture scene contain reflections, which often affect the results and accuracy of machine vision. Classifying these images and obtaining images of interest are key to subsequent image processing. The purpose of this study was to identify useful images and remove images that had a substantial effect on the results of image processing for computer vision in aquaculture. In this study, a method for classification of reflective frames based on image texture and a support vector machine (SVM) was proposed for an actual aquaculture site. Objectives of this study were to: (1) develop an algorithm to improve the speed of the method and to ensure that the method has a high classification accuracy, (2) design an algorithm to improve the intelligence and adaptability of the classification, and (3) demonstrate the performance of the method. The results show that the average classification accuracy, false positive rate, and false negative rate for two types of reflective frames (type I and II) were 96.34%, 4.65%, and 2.23%, respectively. In addition, the running time was very low (1.25 s). This strategy also displayed considerable adaptability and could be used to obtain useful images or remove images that have substantial effects on the accuracy of image processing results, thereby improving the applicability of computer vision in aquaculture. Keywords: Aquaculture, Genetic algorithm, Gray level-gradient co-occurrence matrix, Principal component analysis, Reflection frame, Support vector machine.


2013 ◽  
Vol 38 (2) ◽  
pp. 374-379 ◽  
Author(s):  
Zhi-Li PAN ◽  
Meng QI ◽  
Chun-Yang WEI ◽  
Feng LI ◽  
Shi-Xiang ZHANG ◽  
...  

2020 ◽  
Vol 15 ◽  
Author(s):  
Chun Qiu ◽  
Sai Li ◽  
Shenghui Yang ◽  
Lin Wang ◽  
Aihui Zeng ◽  
...  

Aim: To search the genes related to the mechanisms of the occurrence of glioma and to try to build a prediction model for glioblastomas. Background: The morbidity and mortality of glioblastomas are very high, which seriously endangers human health. At present, the goals of many investigations on gliomas are mainly to understand the cause and mechanism of these tumors at the molecular level and to explore clinical diagnosis and treatment methods. However, there is no effective early diagnosis method for this disease, and there are no effective prevention, diagnosis or treatment measures. Methods: First, the gene expression profiles derived from GEO were downloaded. Then, differentially expressed genes (DEGs) in the disease samples and the control samples were identified. After that, GO and KEGG enrichment analyses of DEGs were performed by DAVID. Furthermore, the correlation-based feature subset (CFS) method was applied to the selection of key DEGs. In addition, the classification model between the glioblastoma samples and the controls was built by an Support Vector Machine (SVM) based on selected key genes. Results and Discussion: Thirty-six DEGs, including 17 upregulated and 19 downregulated genes, were selected as the feature genes to build the classification model between the glioma samples and the control samples by the CFS method. The accuracy of the classification model by using a 10-fold cross-validation test and independent set test was 76.25% and 70.3%, respectively. In addition, PPP2R2B and CYBB can also be found in the top 5 hub genes screened by the protein– protein interaction (PPI) network. Conclusions: This study indicated that the CFS method is a useful tool to identify key genes in glioblastomas. In addition, we also predicted that genes such as PPP2R2B and CYBB might be potential biomarkers for the diagnosis of glioblastomas.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 527
Author(s):  
Vijay Vyas Vadhiraj ◽  
Andrew Simpkin ◽  
James O’Connell ◽  
Naykky Singh Singh Ospina ◽  
Spyridoula Maraka ◽  
...  

Background and Objectives: Thyroid nodules are lumps of solid or liquid-filled tumors that form inside the thyroid gland, which can be malignant or benign. Our aim was to test whether the described features of the Thyroid Imaging Reporting and Data System (TI-RADS) could improve radiologists’ decision making when integrated into a computer system. In this study, we developed a computer-aided diagnosis system integrated into multiple-instance learning (MIL) that would focus on benign–malignant classification. Data were available from the Universidad Nacional de Colombia. Materials and Methods: There were 99 cases (33 Benign and 66 malignant). In this study, the median filter and image binarization were used for image pre-processing and segmentation. The grey level co-occurrence matrix (GLCM) was used to extract seven ultrasound image features. These data were divided into 87% training and 13% validation sets. We compared the support vector machine (SVM) and artificial neural network (ANN) classification algorithms based on their accuracy score, sensitivity, and specificity. The outcome measure was whether the thyroid nodule was benign or malignant. We also developed a graphic user interface (GUI) to display the image features that would help radiologists with decision making. Results: ANN and SVM achieved an accuracy of 75% and 96% respectively. SVM outperformed all the other models on all performance metrics, achieving higher accuracy, sensitivity, and specificity score. Conclusions: Our study suggests promising results from MIL in thyroid cancer detection. Further testing with external data is required before our classification model can be employed in practice.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3691
Author(s):  
Ciprian Orhei ◽  
Silviu Vert ◽  
Muguras Mocofan ◽  
Radu Vasiu

Computer Vision is a cross-research field with the main purpose of understanding the surrounding environment as closely as possible to human perception. The image processing systems is continuously growing and expanding into more complex systems, usually tailored to the certain needs or applications it may serve. To better serve this purpose, research on the architecture and design of such systems is also important. We present the End-to-End Computer Vision Framework, an open-source solution that aims to support researchers and teachers within the image processing vast field. The framework has incorporated Computer Vision features and Machine Learning models that researchers can use. In the continuous need to add new Computer Vision algorithms for a day-to-day research activity, our proposed framework has an advantage given by the configurable and scalar architecture. Even if the main focus of the framework is on the Computer Vision processing pipeline, the framework offers solutions to incorporate even more complex activities, such as training Machine Learning models. EECVF aims to become a useful tool for learning activities in the Computer Vision field, as it allows the learner and the teacher to handle only the topics at hand, and not the interconnection necessary for visual processing flow.


Molecules ◽  
2012 ◽  
Vol 17 (4) ◽  
pp. 4560-4582 ◽  
Author(s):  
Khac-Minh Thai ◽  
Thuy-Quyen Nguyen ◽  
Trieu-Du Ngo ◽  
Thanh-Dao Tran ◽  
Thi-Ngoc-Phuong Huynh

Author(s):  
Binbin Zhao ◽  
Shihong Liu

AbstractComputer vision recognition refers to the use of cameras and computers to replace the human eyes with computer vision, such as target recognition, tracking, measurement, and in-depth graphics processing, to process images to make them more suitable for human vision. Aiming at the problem of combining basketball shooting technology with visual recognition motion capture technology, this article mainly introduces the research of basketball shooting technology based on computer vision recognition fusion motion capture technology. This paper proposes that this technology first performs preprocessing operations such as background removal and filtering denoising on the acquired shooting video images to obtain the action characteristics of the characters in the video sequence and then uses the support vector machine (SVM) and the Gaussian mixture model to obtain the characteristics of the objects. Part of the data samples are extracted from the sample set for the learning and training of the model. After the training is completed, the other parts are classified and recognized. The simulation test results of the action database and the real shot video show that the support vector machine (SVM) can more quickly and effectively identify the actions that appear in the shot video, and the average recognition accuracy rate reaches 95.9%, which verifies the application and feasibility of this technology in the recognition of shooting actions is conducive to follow up and improve shooting techniques.


Author(s):  
Aishwarya .R

Abstract: Lung cancer has been a major contribution to mortality rates world-wide for many years now. There is a need for early diagnosis of lung cancer which if implemented, will help in reducing mortality rates. Recently, image processing techniques have been widely applied in various medical facilities for accurate detection and diagnosis of abnormality in the body images like in various cancers such as brain tumour, breast tumour and lung tumour. This paper is a development of an algorithm based on medical image processing to segment the lung tumour in CT images due to the lack of such algorithms and approaches used to detect tumours. The work involves the application of different image processing tools in order to arrive at the desired result when combined and successively applied. The segmentation system comprises different steps along the process. First, Image preprocessing is done where some enhancement is done to enhance and reduce noise in images. In the next step, the different parts in the images are separated to be able to segment the tumour. In this phase threshold value was selected automatically. Then morphological operation (Area opening) is implemented on the thresholded image. Finally, the lung tumour is accurately segmented by subtracting the opened image from the thresholded image. Support Vector Machine (SVM) classifier is used to classify the lung tumour into 4 different types: Adenocarcinoma(AC), Large Cell Carcinoma(LCC) Squamous Cell Carcinoma(SCC), and No tumour (NT). Keywords: Lung tumour; image processing techniques; segmentation; thresholding; image enhancement; Support Vector Machine; Machine learning;


Sign in / Sign up

Export Citation Format

Share Document