scholarly journals Phosphorus retention in drainage soils of commercial greenhouses.

1969 ◽  
Vol 95 (1-2) ◽  
pp. 1-14
Author(s):  
José A. Dumas ◽  
Joaquín A. Chong ◽  
Magaly Cintrón ◽  
Luis Reinaldo Santiago

Five commercial greenhouses in the central mountainous zone of Puerto Rico were studied in order to identify changes in soil factors that affect P retention. Soils were collected both within and outside drainages at a 0- to 15-cm depth. Soil physicochemical properties varied in samples taken both within and outside drainages. The high Fe and Al content in the soils of this study suggested a high phosphorus retention capacity. Laboratory estimates of P retention parameters indicated differences in P sorption capacity among soils. Phosphorus retention parameters were highly correlated with citrate dithionite extractable Fe. The equilibrium P concentration was also correlated with citrate dithionate Al in soils outside drainages. This finding was due to the higher soil organic matter counterbalancing the soil P retention capability of Al, all of which indicates the importance of clearing all drainages of organic residues in order to avoid excessive movement of P outside the greenhouse premises.

Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 385 ◽  
Author(s):  
R. A. Falkiner ◽  
P. J. Polglase

A young plantation of Pinus radiata in south-eastern Australia was irrigated with secondary-treated sewerage effluent for 48 months, when evapotranspiration exceeded rainfall. Concentrations of phosphorus (P) in saturation pastes of soil were measured after 30, 37, 42, and 48 months to monitor vertical transport of P, and results were compared with depth of transport predicted from P sorption isotherms. Standard laboratory isotherms greatly underestimated the capacity of soil to retain P. Thirty months after plantation establishment, 165 kg/ha of P had been applied in effluent, and P in soil solution was predicted from sorption isotherms to be at a concentration of 5 · 7 mg/L to a depth of 0 · 29 m. In comparison, the concentration of P in saturation paste at this time decreased exponentially from 3 · 5 mg/L at 0 · 025 m to 0 · 43 mg/L at 0 · 30 m. Similarly, 48 months after plantation establishment, 318 kg/ha of P had been applied, and P was predicted to be in equilibrium to a depth of 0 · 51 m. At this time, concentration of P in saturation paste was 4 · 7 mg/L at 0 · 25 m but decreased to a concentration of 0 · 11 mg/L at 0 · 45 m. The concentration of P in saturation paste in the bore-water control was low (<0 · 36 mg/L) thoughout the profile. The discrepancy between predicted and observed results was found from subsequent experiments to be due largely to the short (17 h) equilibration time and to the wide solution : soil ratio (10 : 1) used during construction of standard sorption isotherms. In the 0-0 · 1 m layer of soil, P-retention capacity determined in saturation paste and after 21 days incubation was about 9-fold greater than when the standard method was used. Leaching of dissolved P is unlikely to threaten the sustainable life-time of the effluent-irrigated plantation studied.


Soil Research ◽  
2013 ◽  
Vol 51 (5) ◽  
pp. 427 ◽  
Author(s):  
R. J. Dodd ◽  
R. W. McDowell ◽  
L. M. Condron

Long-term application of phosphorus (P) fertilisers to agricultural soils can lead to in the accumulation of P in soil. Determining the rate of decline in soil P following the cessation of P fertiliser inputs is critical to evaluating the potential for reducing P loss to surface waters. The aim of this study was to use isotope exchange kinetics to investigate the rate of decline in soil P pools and the distribution of P within these pools in grazed grassland soils following a halt to P fertiliser application. Soils were sourced from three long-term grassland trials in New Zealand, two of which were managed as sheep-grazed pasture and one where the grass was regularly cut and removed. There was no significant change in total soil P over the duration of each trial between any of the treatments, although there was a significant decrease in total inorganic P on two of the sites accompanied by an increase in the organic P pool, suggesting that over time P was becoming occluded within organic matter, reducing the plant availability. An equation was generated using the soil-P concentration exchangeable within 1 min (E1 min) and P retention of the soil to predict the time it would take for the water-extractable P (WEP) concentration to decline to a target value protective of water quality. This was compared with a similar equation generated in the previous study, which used the initial Olsen-P concentration and P retention as a predictor. The use of E1 min in place of Olsen-P did not greatly improve the fit of the model, and we suggest that the use of Olsen-P is sufficient to predict the rate of decline in WEP. Conversely, pasture production data, available for one of the trial sites, suggest that E1 min may be a better predictor of dry matter yield than Olsen-P.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 797B-797
Author(s):  
P.R. Johnstone ◽  
T.K. Hartz*

Heavy P fertilization in the Salinas Valley of California has increased soil P concentration to levels of environmental concern. To determine the correlation of various soil test procedures with P pollution potential from agricultural land in this region, soil was collected from 30 fields, most in long-term vegetable rotations. Soils were analyzed for bicarbonate-extractable P (Pbc), calcium chloride-extractable P (Pcc), bio-available P (Pba, by an anion-resin membrane technique), and %P saturation (Psat, by an enrichment technique). The soils were then exposed to a simulated irrigation event, and soluble P concentration in runoff determined. In a separate experiment the effect of cover cropping on sediment and soluble P concentration in runoff was investigated; containers of six soils were planted with oats (Horteum vulgare L.), and then compared to containers of fallow soil. Pcc, Pba and Psat were all highly correlated (r = 0.86, 0.89 and 0.90, respectively) with Pbc, which ranged from 15-177 mg·kg-1. Soluble P concentration in runoff was highly correlated with all measures of P status (r = 0.98, 0.93, 0.85 and 0.83 for Pcc, Pba, Psat and Pbc, respectively). These results suggest that while Pbc, the standard agronomic measure of soil P status, is a useful indicator of P pollution potential, Pcc (a simple laboratory procedure that could be adapted as an on-farm `quick test' technique) may be superior for that purpose. Across soils, cover cropping reduced soluble P concentration in run-off by 41%, and sediment in the runoff by 85%.


2012 ◽  
Vol 21 (3) ◽  
pp. 224-236 ◽  
Author(s):  
Risto Uusitalo ◽  
Petri Ekholm ◽  
Jouni Lehtoranta ◽  
Aleksandar Klimeski ◽  
Olli Konstari ◽  
...  

Phosphate barriers may mitigate dissolved P losses from critical source areas. We studied P retention of industrially produced Ca–Fe oxide as potential P barrier material. In batch tests with 1 mg l−1 P solution, P retention was 85% efficient in 5 min. In a flow-through system, the granule phosphate-retention capacity was 6–7 mg g−1, being largely unaffected by pre-leaching. Phosphate release from P-saturated granules was pH-dependant and suggested P association with Fe oxides, and as Ca-phosphate precipitates. In a sequential extraction of P-saturated granules, about 25% of retained P was released, whereas a separate anaerobic incubation resulted in negligible release of P. Immersion of unleached, P-saturated granules for 16 days in a low-P–concentration lake resulted in more than 80% Ca loss, but no loss of metals, and about 25% loss of P accumulated earlier in granules. These granules are promising for P retention and merit a field-scale study.


2008 ◽  
Vol 88 (3) ◽  
pp. 327-335 ◽  
Author(s):  
D V Ige ◽  
O O Akinremi ◽  
D N Flaten

One of the key factors in phosphorus management is the P retention capacity (PRC) of the soil. In our previous study, we formulated several equations for estimating the phosphorus retention capacity of Manitoba soils. The objectives of the current study were to evaluate these equations using independent soil samples and to evaluate the influence of manure application on the predictive ability of these equations. Forty representative surface soil samples (20 soils with history of manure application and 20 without manure application history) were collected from across Manitoba. The P retention index (P150) and Langmuir adsorption maximum (Smax) were determined in the laboratory. The measured P retention capacities were then compared with those estimated using the formulated equations. Surprisingly, P150, which was obtained from a single measurement, was more robust than Smax that was obtained from at least 17 measurements as the equations provided a better estimate of P150 than Smax. Equations that were based on soil particle sizes (either percent clay or percent sand) provided poor estimates of soil PRC for the whole soil collection. However, when the soils were grouped on a pH basis, soil particle size worked better for soils with pH <7 than for soils with pH ≥7. The equations also worked better for soils with pH similar to those of the soils that were used to formulate the P retention equations. The accuracy of the predicted P sorption capacity improved with the manured soils due to the direct influence of manure application on soil properties that influence P retention such as Ca and Mg. Overall, the combination of CaM3, MgM3 and AlOx provided the best estimate of the PRC of Manitoba soils. Key words: Soil phosphorus, calcareous soils, phosphorus sorption, phosphorus retention, phosphorus retention capacity, estimating phosphorus retention capacity


2001 ◽  
Vol 44 (11-12) ◽  
pp. 69-75 ◽  
Author(s):  
B. Grüneberg ◽  
J. Kern

The suitability of iron-ore and blast furnace slag for subsurface flow (SSF) constructed wetlands was studied over a period of four months. Dairy farm wastewater (TP 45 mg l-1) was percolated through buckets planted with reed (volume 9.1 l; hydraulic load 15 l m-2d-1). One group of buckets was kept under aerobic conditions and the other group under anaerobic conditions, monitored by continuous redox potential measurements. Even at high mass loading rates of 0.65 g P m-1d-1 the slag provided 98% removal efficiency and showed no decrease in performance with time. However, phosphorus fractionation data indicate that the high phosphorus retention capacity under aerobic conditions is to a great extent attributable to unstable sorption onto calcium compounds (NH4Cl-P). Phosphorus sorption of both the slag (200 μg P g-1) and the iron-ore (140 μg P g-1) was promoted by predominantly anaerobic conditions due to continuous formation of amorphous ferrous hydroxides. None of the substrates had adverse affects on reed growth.


2021 ◽  
Vol 1044 ◽  
pp. 143-150
Author(s):  
Muhammad Amir Solihin ◽  
Pujawati Suryatmana ◽  
Fajri Syahid Nurhakim ◽  
Rina Devnita ◽  
Mahfud Arifin

Intensive agricultural cultivation on Cilembu’s Inceptisols has become several soil properties problem for crop production. Nanoparticle phosphate rock and phosphate solubilizing fungi have ability to increase some soil properties content. The research aimed to observe the effect of nanoparticle phosphate rock and phosphate solubilizing fungi on soil P-potential, P-retention, C-organic and base saturation on Cilembu’s Inceptisols. The experiment arranged in Completely Randomized Design. The nanoparticle phosphate rock consisted of 4 levels. The phosphate solubilizing fungi consisted of 2 levels, and 2 replication. Soil P-Potential, P-Retention, C-organic, and Base Saturation were observed. The factors was observed after one month incubation on soil. Results showed that there were an interaction between nanoparticle phosphate rock and phosphate solubilizing fungi on the C-organic after one month incubation. Nanoparticle phosphate rock had affected on C-organic, P-potential and base saturation significantly, but had not affected on P-retention. Utilization of phosphate solubilizing fungi as soil ameliorant had affected significantly on P-potential and C-organic, but had not affected on P-retention and base saturation. Nanoparticle phosphate rock with a dose of 6% had the best effect on increase P-potential and base saturation


2015 ◽  
Vol 19 (1) ◽  
pp. 453-464 ◽  
Author(s):  
J. M. Campbell ◽  
P. Jordan ◽  
J. Arnscheidt

Abstract. This study reports the use of high-resolution water quality monitoring to assess the influence of changes in land use management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the issue of agricultural soil P management and subsequent diffuse transfers at high river flows over a 5-year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STSs) and mitigation efforts – a key concern for catchment management. Results showed an inconsistent response to soil P management over 5 years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STSs) and also to gauge their effectiveness.


1992 ◽  
Vol 6 (3) ◽  
pp. 583-586 ◽  
Author(s):  
John S. Wilson ◽  
Chester L. Foy

The soil organic matter and/or humic matter fraction was highly correlated with the adsorption of ICIA-0051 herbicide onto five soils; clay content and other soil factors were less correlated. The Freundlich equation was used to describe the adsorption of ICIA-0051 by the various soils. Based on the K constants, the general order for adsorption for each soil was Hyde silty clay loam > Frederick silt loam > Davidson clay = Bojac sandy loam > Appling loamy sand. Across all soils, 25 to 50% of the amount adsorbed was removed by two desorptions. Appling, Bojac, and Davidson soils retained less herbicide after two desorptions than did Frederick and Hyde.


Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 503 ◽  
Author(s):  
MDA Bolland ◽  
IR Wilson ◽  
DG Allen

Twenty-three virgin Western Australian soils of different buffer capacities (BC) for phosphorus (P) were collected. The effects of BC on the relationships between Colwell soil test P and the level of P applied, yield and soil test P, and yield and the level of P applied were studied. Wheat (Triticum aestivum cv. Reeves), grown for 27 days in a glasshouse, was used. Two methods of measuring P sorption of soils, P buffer capacity (PBC) and P retention index (PRI), were used. The PBC is determined from a multi-point sorption curve. The PRI is a new, diagnostic, one-point, sorption method now widely used for commercial soil P testing in Western Australia. Both PBC and PRI produced similar results. The relationship between soil test P and the level of P applied was adequately described by a linear equation. When the slope coefficient of the linear equations was related to PBC or PRI, there was no relationship. The other two relationships were adequately described by a Mitscherlich equation. When the curvature coefficient of the Mitscherlich equation was related to PBC or PRI, the trend was for the value of the coefficient to decrease with increasing PBC or PRI. Consequently, as the capacity of the soil to sorb P increased the trend was for larger soil test P or higher levels of P application to produce the same yield.


Sign in / Sign up

Export Citation Format

Share Document