scholarly journals ASSESSMENT OF THE IMPACTS OF INDUSTRIAL ACTIVITIES ON THE SOILS OF RECEIVING ENVIRONMENT AROUND SELECTED OPERATIONAL SITES IN IBADAN METROPOLIS, OYO STATE

Author(s):  
PA Ogar ◽  
CC Ejiogu ◽  
CN Uyo ◽  
AE Ukpe ◽  
I Esomonu ◽  
...  

The study examined the heavy metal components, physical and chemical parameters of soil samples around selected industrial establishments. This was to ascertain the level that industrial activities impacts on the soil quality with a view to providing a platform for rapid generation of data for environment related decision making and promoting compliance to environmental standards in Ibadan metropolis. Twelve composite soil samples to the depths of 0-15 cm, 15-30 cm, 30-45 cm to represent top and subsoil were collected at each of the selected industrial locations using soil auger for soil physical and chemical properties determination. Data collected were analysed using descriptive and inferential statistics. The mean Pb values for 0-15, 15–30, 30-45 cm soil depths were 5.66± 0.55, 4.58±0.68, 4.52±1.35mg/kg; Cd values were 10.23± 0.60, 9.40 ± 1.33 and 10.55± 0.36mg/kg; Co values were 9.76± 1.00, 9.98 ± 2.57 and 13.58 ± 4.16mg/kg; Cr were 10.18 ± 2.40, 12.53 ±3.17 and 12.1 ± 3.75 and Ni were 11.17 ± 3.55, 12.24 ± 2.19 and 12.53 ± 2.34 mg/kg. For Macro nutrients, Total Organic Carbon (TOC) mean values for BC was 33.50 ± 2.48, 29.3 ± 3.91, 26.6 ± 2.74 and 3.60 ± 0.16 and TN values were 3.60 ± 0.16, 3.40 ± 0.12, and 2.90 ± 0.28 respectively while AC had Total Organic Carbon mean values of 28.03 ± 0.65, 23.5 ± 2.01, 19.24 ± 1.43 and Total Nitrogen (TN) mean values 2.90 ± 0.07, 2.43 ± 0.21 and 1.99 ± 0.15 respectively. For Micro nutrient Mn, Fe, Cu, Zn, the mean values at 0-15, 15-30 and 30-45 soil depth for BC were 39.08 ± 9.57, 32.43 ± 11.93 and 18.78 ± 4.80 for Mn, mean values for Fe were 39.53 ± 15.58, 51.83 ± 14.62 and 34.33 ± 10.68, also mean values for Cu was 8.53 ± 0.32, 8.26± 0.29, 7.99 ± 0.06 and mean values for Zn were 9.01 ± 0.66, 6.62 ±0.21 and 4.42 ± 1.11 respectively. There was a decrease in value with depth which may be associated with downward movement of organic materials and nutrients. The study concluded that industrial activities are impacting on the soil quality with special reference to nutrient and heavy metal contents within and around industrial facilities.

Author(s):  
N. P. Udeh ◽  
A. C. Ikegwuonu ◽  
O. A. Okeke ◽  
C. Obudulu ◽  
K. P. Okafor ◽  
...  

Soil samples and cassava tubers collected from farmlands within Nnamdi Azikiwe University, Awka vicinity were analyzed for their heavy metal levels using Atomic Absorption Spectrophotometer (AAS) in order to assess their levels of contamination on the environment as a result of excessive fertilizers and automobile emission. Physiochemical properties of the soil samples were determined using standard methods. The soil pH had a mean value of 6.27 ± 0.07, 6.10 ± 0.06 and 6.57 ± 0.03 respectively indicating that the soils were slightly acidic to neutrality. Total organic carbon and nitrate mean values were 105.20 ± 6.20, 95.75 ± 9.57 and 94.6 ± 2.27 and 138.07 ± 12.09, 149.35 ± 14.25 and 149.20 ± 1.17 respectively showing presence of some organic matters. The mean levels of heavy metals in the soil samples were 0.01 ± 0.01, 0.05 ± 0.03 and 0.05 ± 0.03 for lead (Pb), 0.24 ± 0.16, 0.001 ± 0.001 and 0.001 ± 0.000 for cadmium (Cd) and 0.00 ± 0.00, 0.010 ± 0.006 and 0.001 ± 0.001 for chromium (Cr). These metals levels were in the abundance trend of Pb>Cd> Cr. The mean metal concentrations obtained in the cassava tubers respectively were 0.001 ± 0.001, 0.001 ± 0.001 and 0.005 ± 0.005 for lead (Pb), 0.000 ± 0.000, 0.0003 ± 0.0003 and 0.000 ± 0.000 for cadmium (Cd) and 0.002 ± 0.002, 0.000 ± 0.000 and 0.002 ± 0.002 for chromium (Cr). These metals levels were in the abundance trend of Pb> Cr > Cd. For both the soil and cassava samples, there were no significant variations in the heavy metal concentrations and also in physicochemical parameter except for pH; this showed that there is low heavy metal enrichment in the soils studied. Based on the study, the following heavy metals (Pb, Cd, and Cr) falls within the Codex maximum permissible limits 0.1mg/l or ppm expect soil cadmium in science village which is above the Codex limit. The overall results showed that the farmlands (on soils and cassava tuber) appear to be free from poisoning or some metal enrichment and safe for agricultural purposes and also safe for human health and consumption.


2020 ◽  
pp. 1-11
Author(s):  
S. A. Nta ◽  
M. J. Ayotamuno ◽  
A. H. Igoni ◽  
R. H. Okparanma

This paper presents soil quality as affected by dumped municipal solid waste. Landfill leachate was collected from a hole dug 10 m away from the waste dump site for laboratory analysis. Soil samples were also collected from four trial pits in the dumpsites at the depth of 0.3, 0.6 and 0.9 m and at a distance of 10, 20, 30 m and the control 100 m away from the dumping site. The collected soil samples were subjected to physiochemical and geotechnical analysis. This includes particle size distribution, pH, EC, total organic carbon, total organic matter, extractable micronutrients and heavy metals (Zn, Cu, Mn, Fe, Pb, Cd, Cr, Cl and Ni), Attterberg limits, specific gravity and hydraulic conductivity. The physicochemical concentration was then compared with the maximum allowable concentrations of chemical constituents in uncontaminated soil. The Laboratory analysis shows high value of pH (8.51) DO (0.17 mg/l), COD (68mg/l), BOD5 (324 mg/l), Pb (0.31 mg/l) and Cd (0.06 mg/l) in the leachate sample. The physical properties of the soil near the dumpsite indicated that the soil belongs to sandy loam in texture. pH (6.3-8.32), Electrical conductivity (241-2018 s/cm), total organic carbon (0.24-2.16 ) and total organic matter (0.41-3.73%) were higher near the vicinity of the dumpsite and decreased with increase in the depth and distance. Extractable micro nutrient and heavy metal concentration (Zn, Cu, Mn, Fe, Pb, Cd, Cr, Cl and Ni) were also found to be high near the dumpsite and decreased along the soil depth and distance from the dumping site. The variance in the geotechnical properties of soil revealed by the test results was impacted by the dumped municipal solid waste. These effects decrease with increase in depth. These findings will help in facilitating the invention and introduction of site specific technologies. 


Nativa ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 494
Author(s):  
Carla Da Penha Simon ◽  
Edney Leandro da Vitória ◽  
Elcio Das Graça Lacerda ◽  
Yago Soares Avancini ◽  
Tatiana Fiorotti Rodrigues ◽  
...  

Objetivou-se quantificar o CO2,atributos químicos e físicos do solo são influenciados por diferentes manejos de preparo do solo. O Delineamento experimental adotado foi inteiramente casualizado, sendo os tratamentos: Sistema de Plantio Direto (SPD), Cultivo Mínimo e Preparo Convencional (PC), e como referência: área de vegetação nativa (Mata), contando com seis repetições cada variável de estudo. Além da comparação por teste médias, foi realizada uma análise exploratória das leituras nos sistemas de preparo do solo, onde o CO2 foi traduzido graficamente num diagrama o box-plot. As variáveis avaliadas foram: CO2 obtido por meio de um analisador de gás infravermelho; os atributos físicos do solo: Densidade do solo (Ds), Volume Total de Poros (VTP), Macroporosidade (Ma), Microporosidade (Mi), Resistência a Penetração do solo (RPS) e o atributo químico: carbono orgânico total (COT). O fluxo CO2 do solo apresentou diferença significativa entre o SPD e o PC; valores médios encontrados para SPD, CM, Mata e PC foram 2,30; 2,25; 2,18; e 1,39 μmolCO2m−2 s−1, respectivamente; o COT apresentou seu maior valor na área de Mata (32,95 gkg-1) diferindo estatisticamente das demais áreas. Observou-se uma menor emissão de CO2 do solo no PC, pois o sistema apresenta baixo aporte de carbono orgânico.Palavras-chave: sistema de preparo convencional; cultivo mínimo; preparo convencional; carbono orgânico total. CO2 EMISSION, PHYSICAL ATTRIBUTES AND TOTAL ORGANIC CARBON IN DIFFERENT SOIL PREPARATION SYSTEMS ABSTRACT: The objective was to quantify the CO2, chemical and physical attributes of the soil are influenced by different management of soil preparation. The experimental design was completely randomized, with the treatments: no-tillage (NT), minimum tillage (MT) and conventional tillage (CT), and as reference:  native forest (NF), with six replicates each study variable. In addition to the mean test comparison, an exploratory analysis of the readings was performed in the soil preparation systems, where CO2 was graphically translated into a box-plot diagram. The variables evaluated were: CO2 obtained by means of a infrared gas analyzer; density (Bd), total pore volume (TPV), macroporosity (Ma), microporosity (Mi), resistance to soil penetration (RSP) and chemical attribute: total organic carbon (TOC). The CO2 soil flux presented a significant difference between NT and CT; where respectively the mean values found for SPD, CM, Mata and PC were 2.30; 2.25; 2.18; and 1.39 μmolCO2m-2s-1; the COT had its highest value in the Mata area (32.95 gkg-1), differing statistically from the other areas. It was observed a lower CO2 emission of the soil in the PC, because the system has low input of organic carbon.Keywords: no-tillage; conventional tillage; minimum tillage; total organic carbon.


2011 ◽  
Vol 8 (1) ◽  
pp. 552-560
Author(s):  
Baghdad Science Journal

The heavy metals Cd, Cu, Fe, pb, and Zn were determined in dissolved and particulate phases of the water,in addition to exchangeable and residual phases of the sediment and in the selected organs of the fish Cyprinus carpio collected from the Euphrates River near Al-Nassiriya city center south of Iraq during the summer period / 2009 .Also sediment texture and total organic carbon(TOC) were measured. Analysis emploing a flam Atomic Absorption Spectrophotometers . The mean regional concentrations of the heavy metals in dissolved (µg/l) and particulate phases (µg/gm) dry weight were Cd (0.15,16.13) ,Cu (0.59,24.48) ,Fe (726,909.4) ,Pb (0.20, 49.95) and Zn (2.5,35.62) respectively,and those for exchangeable and residual phases of the Sediment were Cd (0.2,0.1) ,Cu (13.75,16.65) ,Fe (683 , 1351 ) ,Pb (10.1,1.07) and Zn (7.3,16.75)µg/gm dry weight respectively. The heavy metals concentrations in C. carpio organs followed the trend gill > liver > kidney> muscles . The mean concentration in the muscles were Cd (ND) , Cu (0.07) , Fe (4.7) , pb (0.06) and Zn (6.4) (µg/gm) dry weight . The statistical analysis proved a significant correlation between metal concentration in the sediment and total organic carbon, also a positive correlation was proved between its concentrations in the liver organ and the water (particulate phase) . In conclusion the trace metals concentration in particulate phase were higher than its concentration in the dissolved phase . The fish organs showed variations in the metals concentration and the muscle organs showed less concentration than the other organs .


2021 ◽  
Author(s):  
Calogero Schillaci ◽  
Sergio Saia ◽  
Aldo Lipani ◽  
Alessia Perego ◽  
Claudio Zaccone ◽  
...  

<p>Legacy data are frequently unique sources of data for the estimation of past soil properties. With the rising concerns about greenhouse gases (GHG) emission and soil degradation due to intensive agriculture and climate change effects, soil organic carbon (SOC) concentration might change heavily over time.</p><p>When SOC changes is estimated with legacy data, the use of soil samples collected in different plots (i.e., non-aligned data) may lead to biased results. The sampling schemes adopted to capture SOC variation usually involve the resampling of the original sample using a so called paired-site approach.</p><p>In the present work, a regional (Sicily, south of Italy) soil database, consisting of N=302 georeferenced soil samples from arable land collected in 1993 [1], was used to select coinciding sites to test a former temporal variation (1993-2008) obtained by a comparison of models built with data sampled in non-coinciding locations [2]. A specific sampling strategy was developed to spot SOC concentration changes from 1994 to 2017 in the same plots at the 0-30 cm soil depth and tested.</p><p>To spot SOC changes the minimum number of samples needed to have a reliable estimate of SOC variation after 23 years has been estimated. By applying an effect size based methodology, 30 out of 302 sites were resampled in 2017 to achieve a power of 80%, and an a=0.05.</p><p>After the collection of the 30 samples, SOC concentration in the newly collected samples was determined in lab using the same method</p><p>A Wilcoxon test applied to the variation of SOC from 1994 to 2017 suggested that there was not a statistical difference in SOC concentration after 23 years (Z = -0.556; 2-tailed asymptotic significance = 0.578). In particular, only 40% of resampled sites showed a higher (not always significant) SOC concentration than in 2017.</p><p>This finding contrasts with a previous SOC concentration increase that was found in 2008 (75.8% increase when estimated as differences of 2 models built with non-aligned data) [2], when compared to 1994 observed data (Z = -9.119; 2-tailed asymptotic significance < 0.001).</p><p>Such a result implies that the use of legacy data to estimate SOC concentration changes need soil resampling in the same locations to overcome the stochastic model errors. Further experiment is needed to identify the percentage of the sites to resample in order to align two legacy datasets in the same area.</p><p>Bibliography</p><p>[1]Schillaci C, et al.,2019. A simple pipeline for the assessment of legacy soil datasets: An example and test with soil organic carbon from a highly variable area. CATENA.</p><p>[2]Schillaci C, et al., 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Sci Total Environ. </p>


2021 ◽  
Author(s):  
Hayfa Zayani ◽  
Youssef Fouad ◽  
Didier Michot ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
...  

<p>Visible-Near Infrared (Vis-NIR) spectroscopy has proven its efficiency in predicting several soil properties such as soil organic carbon (SOC) content. In this preliminary study, we explored the ability of Vis-NIR to assess the temporal evolution of SOC content. Soil samples were collected in a watershed (ORE AgrHys), located in Brittany (Western France). Two sampling campaigns were carried out 5 years apart: in 2013, 198 soil samples were collected respectively at two depths (0-15 and 15-25 cm) over an area of 1200 ha including different land use and land cover; in 2018, 111 sampling points out of 198 of 2013 were selected and soil samples were collected from the same two depths. Whole samples were analyzed for their SOC content and were scanned for their reflectance spectrum. Spectral information was acquired from samples sieved at 2 mm fraction and oven dried at 40°C, 24h prior to spectra acquisition, with a full range Vis-NIR spectroradiometer ASD Fieldspec®3. Data set of 2013 was used to calibrate the SOC content prediction model by the mean of Partial Least Squares Regression (PLSR). Data set of 2018 was therefore used as test set. Our results showed that the variation ∆SOC<sub>obs</sub><sub></sub>obtained from observed values in 2013 and 2018 (∆SOC<sub>obs</sub> = Observed SOC (2018) - Observed SOC (2013)) is ranging from 0.1 to 25.9 g/kg. Moreover, our results showed that the prediction performance of the calibrated model was improved by including 11 spectra of 2018 in the 2013 calibration data set (R²= 0.87, RMSE = 5.1 g/kg and RPD = 1.92). Furthermore, the comparison of predicted and observed ∆SOC between 2018 and 2013 showed that 69% of the variations were of the same sign, either positive or negative. For the remaining 31%, the variations were of opposite signs but concerned mainly samples for which ∆SOCobs is less than 1,5 g/kg. These results reveal that Vis-NIR spectroscopy was potentially appropriate to detect variations of SOC content and are encouraging to further explore Vis-NIR spectroscopy to detect changes in soil carbon stocks.</p>


2019 ◽  
Vol 886 ◽  
pp. 3-7 ◽  
Author(s):  
Wutthikrai Kulsawat ◽  
Boonsom Porntepkasemsan ◽  
Phatchada Nochit

Paddy residues are the most generous agricultural biomass from the paddy cultivation, Paddy residues practices include crop residue amendment and in-situ burning. It indicated that residue amendment increased the organic carbon and nutrient contents in soil, However, an open residue burning is still a common practice in Thailand despite of strict law enforcements and proper education to farmers about its implications on soil, human and animal health The present study determined how residues management practices: residue amendment and stubble burning, influence the soil organic carbon by determining δ13C in paddy soil profile. The 30 cm depth soil samples from the naturally straw amendment and stubble burning paddy fields were collected in Chiang Khwan district, Roi-et province during 2017. The δ13C values with soil depth showed that residue management practices produce statistical differences in both soils. The δ13C values of soil samples from amendment and burning sites ranged from-23.19‰ to-17.98‰ and-24.79‰ to-19.28‰, respectively. Carbon isotopes differentiate clearly between amendment site (more positive values) and burning site (more negative values). The results from this study were in accordance with literatures which reported that the δ13C distribution in the soil profile can be applied to study in SOC dynamics as a result of different paddy residue management practices (amendment or burning). Further research is needed to confirm the validity of the stable carbon isotope technique in this type of studies.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5813
Author(s):  
Aneta Kowalska ◽  
Anna Grobelak ◽  
Åsgeir R. Almås ◽  
Bal Ram Singh

High anthropogenic activities are constantly causing increased soil degradation and thus soil health and safety are becoming an important issue. The soil quality is deteriorating at an alarming rate in the neighborhood of smelters as a result of heavy metal deposition. Organic biowastes, also produced through anthropogenic activities, provide some solutions for remediation and management of degraded soils through their use as a substrate. Biowastes, due to their high content of organic compounds, have the potential to improve soil quality, plant productivity, and microbial activity contributing to higher humus production. Biowaste use also leads to the immobilization and stabilization of heavy metals, carbon sequestration, and release of macro and micronutrients. Increased carbon sequestration through biowaste use helps us in mitigating climate change and global warming. Soil amendment by biowaste increases soil activity and plant productivity caused by stimulation in shoot and root length, biomass production, grain yield, chlorophyll content, and decrease in oxidative stress. However, biowaste application to soils is a debatable issue due to their possible negative effect of high heavy metal concentration and risks of their accumulation in soils. Therefore, regulations for the use of biowastes as fertilizer or soil amendment must be improved and strictly employed to avoid environmental risks and the entry of potentially toxic elements into the food chain. In this review, we summarize the current knowledge on the effects of biowastes on soil remediation, plant productivity, and soil organic carbon sequestration.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 532 ◽  
Author(s):  
Wenxiang Zhou ◽  
Guilin Han ◽  
Man Liu ◽  
Jie Zeng ◽  
Bin Liang ◽  
...  

The profile distributions of soil organic carbon (SOC), soil organic nitrogen (SON), soil pH and soil texture were rarely investigated in the Lancangjiang River Basin. This study aims to present the vertical distributions of these soil properties and provide some insights about how they interact with each other in the two typical soil profiles. A total of 56 soil samples were collected from two soil profiles (LCJ S-1, LCJ S-2) in the Lancangjiang River Basin to analyze the profile distributions of SOC and SON and to determine the effects of soil pH and soil texture. Generally, the contents of SOC and SON decreased with increasing soil depth and SOC contents were higher than SON contents (average SOC vs. SON content: 3.87 g kg−1 vs. 1.92 g kg−1 in LCJ S-1 and 5.19 g kg−1 vs. 0.96 g kg−1 in LCJ S-2). Soil pH ranged from 4.50 to 5.74 in the two soil profiles and generally increased with increasing soil depth. According to the percentages of clay, silt, and sand, most soil samples can be categorized as silty loam. Soil pH values were negatively correlated with C/N ratios (r = −0.66, p < 0.01) and SOC contents (r = −0.52, p < 0.01). Clay contents were positively correlated with C/N ratios (r = 0.43, p < 0.05) and SOC contents (r = 0.42, p < 0.01). The results indicate that soil pH and clay are essential factors influencing the SOC spatial distributions in the two soil profiles.


Sign in / Sign up

Export Citation Format

Share Document