scholarly journals Effect of Selected Curing Methods on Density and Compressive Strength of Concrete for Technological Self-Reliance

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Grace M Amusan ◽  
Monsuru O Popoola ◽  
Jelili O Shittu

The quest to deliver construction projects within the shortest possible time handled many engineers to maneuver curing ages of concrete and this has been a major concern in construction industries due to associated failures of concrete members emanating from improper curing. This study therefore aimed at investigating the effect of different curing methods on density and compressive strength of concrete with a view to enhancing technological self-reliance of the nation. Concrete cube specimens (150 mm × 150 mm × 150 mm) were cast using mix ratio 1:2:4 with 0.5 water-cement ratio. The concrete specimens were cured for 28 days using open air, ponding, sprinkling and dry covering curing methods. The compressive strength and density were evaluated. The data were validated. The results showed that the compressive strength increases with increasing curing age. The respective compressive strength values obtained for ponding, sprinkling, dry covering and open air curing methods were 22.04, 20.48, 17.28 and 16.02 respectively. The curing methods have compressive strengths in the order Ponding < sprinkling < dry covering < open air. The results of the curing methods on density were also noticed to be directly proportional to strength. Appropriate curing methods of concrete had greater impact in influencing physical and mechanical properties of concrete.Keywords: Concrete, Curing methods, Strength, Sustainable growth

Author(s):  
Francis Kwesi Nsakwa Gabriel-Wettey ◽  
Kennedy Appiadu-Boakye ◽  
Firmin Anewuoh

An experimental investigation was conducted to evaluate the impact of different curing practices on the porosity and compressive strength of concrete. The targeted compressive strength of the concrete at 28-day of curing was 20 N/mm2. Plain concrete cubes were prepared with a mix ratio 1:1.5:3 by weight and 0.6 water-cement ratio. A total of 120 concrete cubes were tested on 7th, 14th, 21st, 28th and 56th day curing periods for slump, porosity and compressive strength. The four curing methods used were immersion, jute sack, plastic sheet and sprinkling which were all carried out in the laboratory under the same average environmental conditions of 27 ± 20°C temperature and 75% relative humidity. The results from the study showed that slump values were within the range of 52mm to 58mm which is within the medium range of 25 to 100mm, hence a true slump was achieved. The porosity of all samples decreased with age (i.e. at the dried state, immersion recorded the lowest 4.35%, followed by jute sack with 5.25%, plastic sheet 5.29% and sprinkling 5.55%). Again, the pattern of increases in concrete density (immersion curing produced concrete with the highest mean densities of 2369 kg/m3, jute 2360 kg/m3 ,plastic sheet 2277 kg/m3, sprinkling 2229 kg/m3 all for 56 days) was similar to that of the compressive strength (i.e immersion curing method yielded the highest compressive strength of 25.43 N/mm2, jute method 23.90 N/mm2, plastic method 23.47 N/mm2 , sprinkling method 22.33 N/mm2 for 56 days curing ages respectively). Therefore, increases in both compressive strength and densities of concrete cube is a function of curing method. The study concludes that the immersion curing method has the greater effect on the properties of concrete since it yielded the highest strengths. The recommendation is made for further studies on the impact of curing methods on the porosity and compressive strength of concrete on the field since this study was done in the laboratory under control conditions.


2020 ◽  
Vol 10 (3(S)) ◽  
pp. 30-38
Author(s):  
Daniel Yaw Osei ◽  
Zakari Mustapha ◽  
Mohammed D.H. Zebilila

The structural use of concrete depends largely on its strength, especially compressive strength.Various tests were carried out to ascertain the properties of concrete materials, whereas test performances ofthe concrete with different mix ratios at specific ages of curing were undertaken. The study determined thecompressive strength of concrete using different curing methods. Four different methods of curing (ponding,continuous wetting, open-air curing and sprinkling with water) were used. Seventy-two (72) cubes were castusing a mix ratio of 1:2:4 and 1:3:6 with 0.5 water cement ratio and with 0.6 waters cement ratio respectively.The compressive strengths were determined after 7 days, 14 days and at 28 days of curing. Findings showthat for 1:2:4 concrete, maximum of 28-day compressive was the highest for concrete cured by ponding andthe least was by sprinkling water. Further findings show that for 1:3:6 concrete, maximum of 28-daycompressive strength was obtained using ponding and the least was open air curing. Despite ponding methodproducing the highest compressive strength of concrete, it is practically impossible to cure cubes aboveground structural elements. Wet-covering method is recommended for structural elements, such as columns,beams and slabs in other to produce concreteof a required compressive strength.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2013 ◽  
Vol 850-851 ◽  
pp. 847-850 ◽  
Author(s):  
Lin Chao Dai

In order to study the coal and gas outburst similar simulation experiment, coal similar material was made up based on the similarity theory. Based on the previous similar material study, the cement, sand, water, activated carbon and coal powder was selected as the raw material of similar material. Meanwhile similar material matching program with 5 factors and 6 levels was designed by using Uniform Design Method. And the physical and mechanical properties of the similar material compressive strength was measured under different proportions circumstances. The relationship between similar material and the raw materials was analyzed. The results show that choosing different materials can compound different similar materials with different requirements. And the water-cement ratio plays a decisive influence on the compressive strength of similar material. The compressive strength of similar material decreases linearly when the water-cement ratio increases.


Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


Data in Brief ◽  
2018 ◽  
Vol 18 ◽  
pp. 877-881
Author(s):  
Ignatius O. Omuh ◽  
Timothy O. Mosaku ◽  
Opeyemi Joshua ◽  
Rapheal A. Ojelabi ◽  
Lekan M. Amusan ◽  
...  

Author(s):  
Theodore Gautier Bikoko ◽  
Jean Claude Tchamba ◽  
Valentine Yato Katte ◽  
Divine Kum Deh

To fight against the high cost and the increasing scarcity of cement and at the same time to reduce the CO2 greenhouse gases emission associated with the production of Portland cement, two types of wood ashes as a substitute of cement in the production of concretes were investigated. In this paper, we substituted cement by two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 30 % on one hand, and on the other hand, we added these two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 10 % by weight of cement in the concrete samples. After 7, 14 and 28 days of curing, compressive strength tests were conducted on these concrete samples. The findings revealed that using wood ashes as additives/admixtures or as a substitute of cement in the production/manufacturing of concrete decreased the compressive strength of concrete. Hence, it can be said that wood ash has a negative influence on the strength of concrete. At three percent (3%) and ten percent (10%) of addition, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie, whereas at five percent (5%) of addition, the wood ash from avocado specie offers better resistance compared to the wood ash from eucalyptus specie. At thirty percent (30%) of substitution, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie. The compressive strengths increase with the increase of curing age.


2021 ◽  
Vol 293 ◽  
pp. 02023
Author(s):  
Pengtao Wang

In order to recycle the boulder powder produced in the process of manufactured sand production and reduce the cost of engineering concrete, this article studied the influence of boulders powder on the compressive strength of concrete. The results show that in the early stage of concrete test, the compressive strength of rock powder concrete is slightly lower than of fly ash and mineral powder concrete. With the development of curing age, the strength of boulders powder concrete developed slower. As the increase of boulders powder content, the compressive strength of different curing age gradually decreased, and it was suggested that the content of boulders powder should be controlled within 20% of cementitious materials mass. The positive effect of boulders powder fineness on the strength of concrete is limited, so it is suggested to use unprocessed collected boulders powder in the project, which is economical and environmentally friendly. With the adjustment of water-to-binder ratio, boulders powder can be prepared with different strength grades of concrete to meet the needs of engineering; the composite of boulders powder with traditional mineral admixtures, such as fly ash, and especially granulated blast furnace slag powder, can significantly improve the strength of concrete.


Author(s):  
Suhaib Bakshi

Abstract: Compressive strength of concrete is the capacity of concrete to bear loads of materials or structure sans breaking or being deformed. Specimen under compression shrinks in size whilst under tension the size elongates. Compressive strength essentially gives concept about the properties of concrete. Compressive strength relies on many aspects such as water-cement ratio, strength of cement, calidad of concrete material. Specimens are tested by compression testing machine after the span of 7 or 28 days of curing. Compressive strength of the concrete is designated by the load on the area of specimen. In this research various proportions of such aggregate mixed in preparing M 30 grade and M 40 grade of Concrete mix and the effect is studied on its compressive strength . Several research papers have been assessed to analyze the compressive strength of concrete and the effect of different zones of sand on compressive strength are discussed in this paper. Keywords: Sand, Gradation, Coarse aggregate, Compressive strength


2018 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Belaribi Hassiba ◽  
Mellas Mekki ◽  
Rahmani Fraid

The paper analyses the effects of high temperatures on the concrete residual strength using ultrasonic velocity (UPV). An experimental investigation was conducted to study the relationship between UPV residual data and compressive strength of concrete with different mixture proportions, cubic specimens with water-cement ratio of 0.35. They were heated in an electric furnace at temperatures ranging from 200°C to 600°C. In this experiment a comparison was made between the four groups which include two types of fibers steel 0,19%, 0,25% and 0,5%, polypropylene: 0,05%, 0,11% 0,16 % by volume. Cube specimens were tested in order to determine ultrasonic velocity. The compressive strength was tested too. According to the results, relations were established between ultrasonic velocity in the specimens and the compressive strength at different temperature and the range of the velocity of the waves were also determined for this kind of concrete. Result of the test showed that UPV test can be successfully used in order to verify the consistency of structures damaged by fire.


Sign in / Sign up

Export Citation Format

Share Document