scholarly journals TIME TO EXHAUSTION AT 90 AND 100% VO2MAX AND PHYSIOLOGICAL DETERMINANTS OF 3 KM PERFORMANCE IN ELITE CYCLISTS

Author(s):  
Zacharogiannis Elias ◽  
Pilianidis Theophilos ◽  
Dallas Giorgos ◽  
Mantzuranis Nikos ◽  
Argitaki Polixeni ◽  
...  

The minimal power that elicits VO2max and the time to exhaustion (tlimit) at this workload appear to determine cyclists’ endurance capabilities, analyze performance and help coaches to design training. Data in the literature are limited so as to elucidate this. The aim of this study was to investigate the tlimit at the power output, which corresponds to 90 (tlimit 90) and 100% VO2max (tlimit 100) in elite endurance cyclists. The contribution of tlimit in 3 km indoor individual time trial was also studied. Subjects were eleven elite male road cyclists (age 17.7  0.5 years, body mass 66.8  4.9 kg, body height 176.3  7.4 cm, VO2max 69.77  2.58 ml.kg-1.min-1). Power output at 90 and 100% VO2max was determined by continuous incremental testing. This protocol had steps of 2 min and increments of 30 W. The exhaustive trials tlimit 90 or tlimit 100 were performed in random order at least five days apart. Five days after the last exhaustive trial, cyclists performed an individual 3 km time trial on an indoor wooden track. Mean sd, tlimit 90 and tlimit 100 were 16:27.73  07:46.6 and 4:48.6  00:53.2 min:sec. Time to exhaustion at tlimit 90 and tlimit 100 ranged between 07:00-30:15 and 03:10-06:00 min:sec, respectively. Tlimit 100, tlimit 90 and VO2max (ml.min-1) did not correlate with 3 km cycling performance (r = 0.08, 0.16 and –0.59, p > 0.05). Tlimit 90 was inversely related (r = –0.49, p = 0.1) with VO2max (ml.min-1). Only power output which corresponded to ventilatory threshold and VO2max correlated significantly with 3 km performance (r = –0.83 and –0.80, p < 0.01). The results of this study indicate that: a) if cyclists’ training intensity is based on %VO2max, individual determination of the tlimit at the %VO2max has to be considered due to a wide range of tlimit to exhaustion; b) 3 km performance directly depends on the power that corresponds with ventilatory threshold and VO2max. <p> </p><p><strong> Article visualizations:</strong></p><p><img src="/-counters-/edu_01/0723/a.php" alt="Hit counter" /></p>

2014 ◽  
Vol 9 (2) ◽  
pp. 309-315 ◽  
Author(s):  
Gregory T. Levin ◽  
Paul B. Laursen ◽  
Chris R. Abbiss

Purpose:To assess the reliability of a 5-min-stage graded exercise test (GXT) and determine the association between physiological attributes and performance over stochastic cycling trials of varying distance.Methods:Twenty-eight well-trained male cyclists performed 2 GXTs and either a 30-km (n = 17) or a 100-km stochastic cycling time trial (n = 9). Stochastic cycling trials included periods of high-intensity efforts for durations of 250 m, 1 km, or 4 km depending on the test being performing.Results:Maximal physiological attributes were found to be extremely reliable (maximal oxygen uptake [VO2max]: coefficient of variation [CV] 3.0%, intraclass correlation coefficient [ICC] .911; peak power output [PPO]: CV 3.0%, ICC .913), but a greater variability was found in ventilatory thresholds and economy. All physiological variables measured during the GXT, except economy at 200 W, were correlated with 30-km cycling performance. Power output during the 250-m and 1-km efforts of the 30-km trial were correlated with VO2max, PPO, and the power output at the second ventilatory threshold (r = .58–.82). PPO was the only physiological attributed measured during the GXT to be correlated with performance during the 100-km cycling trial (r = .64).Conclusions:Many physiological variables from a reliable GXT were associated with performance over shorter (30-km) but not longer (100-km) stochastic cycling trials.


2019 ◽  
Author(s):  
Justin Andre ◽  
Ann-Maree Vallence ◽  
Hakuei Fujiyama ◽  
Jeremiah Peiffer

Transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) have separately been shown to increase performance during fixed-work time-to-exhaustion tasks. No studies have examined application of tDCS to these cortical sites in a single study or during self-paced tasks. Objectives: This study examined the influence of anodal-tDCS (A-tDCS) applied to M1 and DLPFC on cycling performance during a self-paced 16.1-km time trial (TT). Design: randomised cross-over design. Methods: Ten cyclists received 20 min of A-tDCS (1.5 mA) applied to M1, DLPFC or the visual cortex (V1; control), followed by a standardised 10-min warmup and a 16.1-km cycling TT. During the TT, heart rate and power output were continuously recorded and mean values for each quartile of the total TT duration were calculated. Ratings of perceive exertion (RPE) were collected at four, eight, 12 and 16.1 km. RESULTS: No differences were observed for the time-to-complete (p=0.07; BF10=1.24) or mean power output (p=0.09; BF10=1.11) during the 16.1-km TT between the M1 (1443.7±81.0 s and 274±44 W), DLPFC (1428.4±80.0 s and 280±39 W) and V1 (1434.8±9.6 s and 279±44 W) conditions. Both HR and RPE progressively increased from the first quartile of the TT with no differences observed between A-tDCS conditions. CONCLUSION: A-tDCS does not represents a viable method to decrease the physiological and perceptual stress during or enhance the performance of a self-paced cycling TT. Nevertheless, these findings should be viewed with respect to the inherent complexities between performance, fatigue and the brain.


2016 ◽  
Vol 11 (6) ◽  
pp. 707-714 ◽  
Author(s):  
Benoit Capostagno ◽  
Michael I. Lambert ◽  
Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.


2021 ◽  
Vol 13 (1) ◽  
pp. 111-120
Author(s):  
Mladen Mikić ◽  
Marko D.M. Stojanović ◽  
Aleksandra Milovančev ◽  
Tatjana Miljković ◽  
Marija Bjelobrk ◽  
...  

Abstract Study aim: To asses and compare the aerobic capacity and respiratory parameters in recreational basketball-engaged university students with age-matched untrained young adults. Material and methods: A total of 30 subjects were selected to took part in the study based on recreational-basketball activity level and were assigned to a basketball (BG: n = 15, age 22.86 ± 1.35 yrs., body height 185.07 ± 5.95 cm, body weight 81.21 ± 6.15 kg) and untrained group (UG: n = 15, age 22.60 ± 1.50 yrs., body height 181.53 ± 6.11 cm, body weight 76.89 ± 7.30 kg). Inspiratory vital capacity (IVC), forced expiration volume (FEV1), FEV1/IVC ratio, maximal oxygen consumption (VO2max), ventilatory threshold (VO2VT) and time to exhaustion, were measured in all subjects. Student T-test for independent Sample and Cohen’s d as the measure of the effect size were calculated. Results: Recreational basketball-engaged students (EG) reached significantly greater IVC (t = 7.240, p < 0.001, d = 1.854), FEV1 (t = 10.852, p < 0.001, d = 2.834), FEV1/IVC ratio (t = 6.370, p < 0.001, d = 3.920), maximal oxygen consumption (t = 9.039, p < 0.001, d = 3.310), ventilatory threshold (t = 9.859, p < 0.001, d = 3.607) and time to exhaustion (t = 12.361, p < 0.001, d = 4.515) compared to UG. Conclusions: Long-term exposure to recreational basketball leads to adaptive changes in aerobic and respiratory parameters in male university students.


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


Author(s):  
Antonis Kesisoglou ◽  
Andrea Nicolò ◽  
Louis Passfield

Purpose: To examine the effect of cycling exercise intensity and duration on subsequent performance and to compare the resulting acute performance decrement (APD) with total work done (TWD) and corresponding training-load (TL) metrics. Methods: A total of 14 male cyclists performed a 5-minute time trial (TT) as a baseline and after 4 initial exercise bouts of varying exercise intensity and duration. The initial exercise bouts were performed in a random order and consisted of a 5- and a 20-minute TT and a 20- and a 40-minute submaximal ride. The resulting APD was calculated as the percentage change in 5-minute TT from baseline, and this was compared with the TWD and TL metrics for the corresponding initial exercise bout. Results: Average power output was different for each of the 4 initial exercise bouts (; P < .001), and all bouts resulted in an APD. But APD was only different when comparing maximal with submaximal bouts (; P < .001). The APD contradicted TWD and TL metrics and was not different when comparing 5- and 20-minute maximal TTs or the 20- and 40-minute submaximal bouts. In contrast, TL metrics were different for all training sessions (; P < .001). Conclusion: An APD is found after initial exercise bouts consisting of 5- and 20-minute TTs and after 20- and 40-minute of submaximal exercise that is not consistent with the corresponding values for TWD or TL. This discrepancy highlights important shortcomings when using TWD and TL to compare exercise bouts of different intensity and duration.


2016 ◽  
Vol 41 (8) ◽  
pp. 864-871 ◽  
Author(s):  
Phillip M. Bellinger ◽  
Clare L. Minahan

The present study investigated the effects of β-alanine supplementation on the resultant blood acidosis, lactate accumulation, and energy provision during supramaximal-intensity cycling, as well as the aerobic and anaerobic contribution to power output during a 4000-m cycling time trial (TT). Seventeen trained cyclists (maximal oxygen uptake = 4.47 ± 0.55 L·min−1) were administered 6.4 g of β-alanine (n = 9) or placebo (n = 8) daily for 4 weeks. Participants performed a supramaximal cycling test to exhaustion (equivalent to 120% maximal oxygen uptake) before (PreExh) and after (PostExh) the 4-week supplementation period, as well as an additional postsupplementation supramaximal cycling test identical in duration and power output to PreExh (PostMatch). Anaerobic capacity was quantified and blood pH, lactate, and bicarbonate concentrations were measured pre-, immediately post-, and 5 min postexercise. Subjects also performed a 4000-m cycling TT before and after supplementation while the aerobic and anaerobic contributions to power output were quantified. β-Alanine supplementation increased time to exhaustion (+12.8 ± 8.2 s; P = 0.041) and anaerobic capacity (+1.1 ± 0.7 kJ; P = 0.048) in PostExh compared with PreExh. Performance time in the 4000-m TT was reduced following β-alanine supplementation (−6.3 ± 4.6 s; P = 0.034) and the mean anaerobic power output was likely to be greater (+6.2 ± 4.5 W; P = 0.035). β-Alanine supplementation increased time to exhaustion concomitant with an augmented anaerobic capacity during supramaximal intensity cycling, which was also mirrored by a meaningful increase in the anaerobic contribution to power output during a 4000-m cycling TT, resulting in an enhanced overall performance.


2004 ◽  
Vol 14 (5) ◽  
pp. 541-549 ◽  
Author(s):  
Ben Desbrow ◽  
Sally Anderson ◽  
Jennifer Barrett ◽  
Elissa Rao ◽  
Mark Hargreaves

The effects of a commercial sports drink on performance in high-intensity cycling was investigated. Nine well-trained subjects were asked to complete a set amount of work as fast as possible (time trial) following 24 h of dietary (subjects were provided with food, energy 57.4 ± 2.4 kcal/kg and carbohydrate 9.1 ± 0.4 g/kg) and exercise control. During exercise, subjects were provided with 14 mL/kg of either 6% carbohydrate-electrolyte (CHO-E) solution or carbohydrate-free placebo (P). Results showed that subjects’ performances did not greatly improve (time, 62:34 ± 6:44 min:sec (CHO-E) vs. 62:40 ± 5:35 min:sec (P); average power output, 283.0 ± 25.0 W (CHO-E) vs. 282.9 ± 29.3 W (P), P > 0.05) while consuming the sports drink. It was concluded that CHO-E consumption throughout a 1-h time trial, following a pre-exercise dietary regimen designed to optimize glucose availability, did not improve time or power output to a greater degree than P in well-trained cyclists.


2018 ◽  
Vol 13 (3) ◽  
pp. 268-273 ◽  
Author(s):  
Ana B. Peinado ◽  
Nuria Romero-Parra ◽  
Miguel A. Rojo-Tirado ◽  
Rocío Cupeiro ◽  
Javier Butragueño ◽  
...  

Context: While a number of studies have researched road-cycling performance, few have attempted to investigate the physiological response in field conditions. Purpose: To describe the physiological and performance profile of an uphill time trial (TT) frequently used in cycling competitions. Methods: Fourteen elite road cyclists (mean ± SD age 25 ± 6 y, height 174 ± 4.2 cm, body mass 64.4 ± 6.1 kg, fat mass 7.48% ± 2.82%) performed a graded exercise test to exhaustion to determine maximal parameters. They then completed a field-based uphill TT in a 9.2-km first-category mountain pass with a 7.1% slope. Oxygen uptake (VO2), power output, heart rate (HR), lactate concentration, and perceived-exertion variables were measured throughout the field-based test. Results: During the uphill TT, mean power output and velocity were 302 ± 7 W (4.2 ± 0.1 W/kg) and 18.7 ± 1.6 km/h, respectively. Mean VO2 and HR were 61.6 ± 2.0 mL · kg−1 · min−1 and 178 ± 2 beats/min, respectively. Values were significantly affected by the 1st, 2nd, 6th, and final kilometers (P < .05). Lactate concentration and perceived exertion were 10.87 ± 1.12 mmol/L and 19.1 ± 0.1, respectively, at the end of the test, being significantly different from baseline measures. Conclusion: The studied uphill TT is performed at 90% of maximum HR and VO2 and 70% of maximum power output. To the authors’ knowledge, this is the first study assessing cardiorespiratory parameters combined with measures of performance, perceived exertion, and biochemical variables during a field-based uphill TT in elite cyclists.


1995 ◽  
Vol 5 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Laurie H.G. Rauch ◽  
Ian Rodger ◽  
Gary R. Wilson ◽  
Judy D. Belonje ◽  
Steven C. Dennis ◽  
...  

This study compared the effects of supplementing the normal diets of 8 endurance-trained cyclists with additional carbohydrate (CHO), in the form of potato starch, for 3 days on muscle glycogen utilization and performance during a 3-hr cycle ride. On two occasions prior to the trial, the subjects ingested in random order either their normal CHO intake of 6.15 ± 0.23 g/kg body mass/day or a high-CHO diet of 10.52 ± 0.57 g/kg body mass/day. The trial consisted of 2 hr of cycling at ~75% ofwith five 60-s sprints at 100%at 20-min intervals, followed by a 60-min performance ride. Increasing CHO intake by 72 ± 9% for 3 days prior to the trial elevated preexercise muscle glycogen contents, improved power output, and extended the distance covered in 1 hr. Muscle glycogen contents were similar at the end of the 3-hr trial, indicating a greater utilization of glycogen when subjects were CHO loaded, which may have been responsible for their improved cycling performance.


Sign in / Sign up

Export Citation Format

Share Document