scholarly journals X-RAY FLUORESCENCE AND STABLE ISOTOPES ANALYSES OF IKPESHI MARBLE, SOUTH SOUTHERN NIGERIA

2020 ◽  
Vol 10 ◽  
pp. 102
Author(s):  
Phillips Reuben Ikhane ◽  
Olalekan Olayiwola Oyebolu ◽  
Afolabi Omotayo Alaka

Integration of X-ray fluor escence and stable isotope spectrometric techniques for quality assessment and provenance study of exposed marble deposit at Fakunle Quarry, Ikpeshi, South Western Nigeria constitute the fundamental aims of this research. Fourteen fresh (14) marble samples obtained at different localities within the quarry were subjected to geochemical and isotopic analyses to ascertain the quantitative abundance of major oxides and stable isotopes using X-Ray Fluorescence and Thermo Fisher mass spectrometer respectively. The major oxides revealed by XRF analysis of the marble samples are CaO, MgO, SiO2, Al2O3, Fe2O3 and Na2O with percentage composition ranging between 11.66 – 13.25, 7.75 – 9.65, 41.36 – 47.55, 12.36 – 15.23, 7.79 – 10.55 and 1.44 – 1.75respectively. Na2O + K2O value ranges between 1.48 and 1.78.The classification of marble in relation to percentage of calcite-dolomite indicate a percentage range of -5 to 4% and 93-103% for Calcite and Dolomite respectively. Chemical Index of Alteration (CIA) ranges from 45.16 to 51.59 % and Chemical Index of Weathering (CIW) ranges from 46.19 to 52.30 %. Stable isotope ( ? –180) of marble ranges from -10.50 to -7.00 with a corresponding value from 25.50 to 55.33.Interpretation of the overall results indicates an impure quartz-rich dolomitic marble; metamorphosed from a low carbonate sedimentary/meta sedimentary protolith which shallowly precipitated within a passive marginal marine environment under humid condition. The high silica impurity can however be attributed to the inordinate influx of terrigenous sediments during the precipitation process. Weathering effect is minimal on the marble deposit. Conclusively, strong correlation is apparent between the obtained geochemical result and the basement geology of the study area.

1997 ◽  
Vol 34 (9) ◽  
pp. 1286-1294 ◽  
Author(s):  
D. K. McDaniel ◽  
G. N. Hanson ◽  
S. M. McLennan ◽  
J. H. Sevigny

The Trap Falls Formation is a sequence of interlayered quartzites and schists that crops out in the Appalachian belt in southern Connecticut, and was deformed and metamorphosed to middle amphibolite grade during Acadian orogenesis. Schists have high Al2O3 and low CaO, Na2O, and K2O (chemical index of alteration CIA = 68–70), consistent with a significant weathering history in the sediment source. Rare earth element (REE) patterns for both schists and quartzites parallel post-Archean average Australian Shale, with light REE enrichment and well-developed Eu anomalies, suggesting an average upper crustal source. Whole-rock Nd and Pb isotopic analyses indicate old sources, with depleted mantle model ages (TDM) from 1880 to 1660 Ma, 207Pb/204Pb from 15.62 to 15.87, and 206Pb/204Pb from 19.11 to 22.08. U–Pb ages for single-grain and multigrain populations of detrital zircons range between 1113 and 992 Ma, the youngest of which defines a maximum depositional age for the Trap Falls Formation. U–Pb zircon ages indicate a late Grenvillian source for the zircons. Nd and Pb isotopic compositions are consistent with a source that is dominated by Grenville-age rocks with some component of older crust. Combining all of the data, we interpret that the protolith of the Trap Falls Formation was comprised of aluminous muds interbedded with clean quartz arenites, and suggest that they were deposited on the stable, trailing-edge margin of North America sometime during the Late Proterozoic to the Early Cambrian. The sediments were derived from a weathered source with an upper continental crust composition. Isotopic data and zircon ages indicate that this source was dominated by Grenville-age rocks.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Dongna Liu ◽  
Yun Zhang ◽  
Anchao Zhou ◽  
Emmanuel Nnachi ◽  
Shuting Huo ◽  
...  

In order to ascertain the kaolinite crystallinity of Carboniferous Permian coal-measure kaolinite rocks, seven groups of fresh samples were collected from below the ground in the Xiaoyu mine, Datong coalfield. Microscopy, X-ray diffraction (XRD), differential thermal analysis (DTA), infrared (IR) spectroscopy and X-ray fluorescence (XRF) spectrometry methods were applied to the samples. The petrographic analysis results show that the kaolinite rocks are characterized as compact, phaneritic, clastic, sand-bearing, sandy and silty types; the kaolinite content in the Shanxi formation and upper Taiyuan formations was more than 95%, while it was 60–90% in the middle and lower Taiyuan formations. Based on the Hinckley index and the features of XRD, DTA and IR of kaolinites, crystallinity was classified as having three grades: ordered, slightly disordered and disordered. The kaolinites’ SiO2 /Al2O3 molar ratio was about 1.9–5.7, with a chemical index of alteration (CIA) of about 95.4–99.5. This research suggests that the kaolinite crystallinity correlates positively to its clay mineral content, purity and particle size, which are also related to the SiO2/Al2O3 molar ratio and CIA. The original sedimentary environment and weathering have a direct influence on kaolinite crystallinity, and the existence of organic matter is conducive to the stable existence of kaolinite. The study results have significance for the extraction and utilization of coal-measure kaolinite and the development of kaolinite crystallography and mineralogy.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Nenita N. Bukalo ◽  
Georges-Ivo E. Ekosse ◽  
John O. Odiyo ◽  
Jason S. Ogola

AbstractThe geochemical characteristics of selected kaolins from Cameroon and Nigeria are presented, with an attempt to elucidate on their possible industrial applications by comparing them to world-known kaolin deposits. Major oxides concentrations were subjected to factor analyses in interpreting their relationships. Geochemical indices, including chemical index of alteration (CIA), chemical index of weathering (CIW) and the index of compositional variability (ICV) were computed and plotted on binary and ternary diagrams to determine the intensity of weathering of the kaolins and discriminate their different source rock types. Kaolinite was the major phase, followed by quartz, illite and goethite as minor phases. Minerals in trace phases included smectite, anatase, muscovite, gibbsite, microcline, palygorskite and calcite. Mean abundances of major oxides in wt% were: SiO


2018 ◽  
Author(s):  
Chad Wittkop ◽  
◽  
Christian Piper ◽  
Julie K. Bartley ◽  
Russell Krueger ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mayla A. Ramos-Vázquez ◽  
John S. Armstrong-Altrin

AbstractThe mineralogy, bulk sediment geochemical composition, and U–Pb ages of detrital zircons retrieved from the Barra del Tordo (Tordo) and Tesoro beach sediments in the northwestern Gulf of Mexico were analyzed to determine their provenance. The beach sediments are mainly composed of quartz, ilmenite, magnetite, titanite, zircon, and anorthite. The weathering proxies such as the Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), and Plagioclase Index of Alteration (PIA), reveal a moderate-to-high intensity of weathering in the source area. The chondrite-normalized rare earth element (REE) patterns are similar to felsic igneous rocks, with large negative europium anomaly (Eu/Eu* = ~ 0.47–0.80 and ~ 0.57–0.67 in the Tordo and Tesoro beach sediments, respectively).Three major zircon U–Pb age groups are identified in the Tordo and Tesoro beach sediments, i.e., Proterozoic (~ 2039–595 Ma), Mesozoic (~ 244–70.3 Ma), and Cenozoic (~ 65.9–1.2 Ma). The differences of the zircon age spectrum between the Tordo and Tesoro beach sediments are not significant. The comparison of zircon U–Pb ages in this study with ages of potential source terranes suggests that the Mesozoic and Cenozoic zircons of the studied Tordo and Tesoro beach sediments were derived from the Eastern Alkaline Province (EAP) and Mesa Central Province (MCP). Similarly, the likely sources for the Proterozoic zircons were the Sierra Madre Oriental (SMOr) and Oaxaquia in the northwestern Gulf of Mexico. The results of this study further indicate that the sediments delivered to the beaches by rivers and redistributed by longshore currents were crucial in determining the sediment provenance.


2013 ◽  
Vol 212 ◽  
pp. 15-20
Author(s):  
Kazimierz J. Ducki ◽  
Jacek Mendala ◽  
Lilianna Wojtynek

The influence of prolonged ageing on the precipitation process of the secondary phases in an Fe-Ni superalloy of A-286 type has been studied. The samples were subjected to a solution heat treatment at 980°C for 2 h and water quenched, and then aged at temperatures of 715, 750 and 780°C at holding times from 0.5 to 500 h. Structural investigations were conducted using TEM and X-ray diffraction methods. The X-ray phase analyses performed on the isolates were obtained by anodic dissolution of the solid samples. After solution heat treatment the alloy has the structure of twinned austenite with a small amount of undissolved precipitates, such as carbide TiC, carbonitride TiC0.3N0.7, nitride TiN0.3, carbosulfide Ti4C2S2, Laves phase Ni2Si, and boride MoB. The application of ageing causes precipitation processes of γ-Ni3(Al,Ti), G (Ni16Ti6Si7), η (Ni3Ti), β (NiTi) and σ (Cr0.46Mo0.40Si0.14) intermetallic phases, as well as the carbide M23C6. It was found that the main phase precipitating during alloy ageing was the γ intermetallic phase.


2018 ◽  
Vol 90 (3) ◽  
pp. 1852-1860 ◽  
Author(s):  
Maud Heuillet ◽  
Floriant Bellvert ◽  
Edern Cahoreau ◽  
Fabien Letisse ◽  
Pierre Millard ◽  
...  

2016 ◽  
Vol 8 (2) ◽  
pp. 15
Author(s):  
Adewole John Adeola ◽  
Abisola M. Oyebola

Idi-ayunre and Akure areas are part of the basement complex of southwestern Nigeria and are predominantly consisted of gneisses, granite and migmatite with some minor quartz veins and pegmatite. These rocks have been greatly weathered to form clay, laterite and soils.Chemical analysis were carried out on basement rocks and exposed profiles. The weathering profile was subjected to X ray diffraction (XRD) analysis to determine mineralogical compositions whereas Chemical Index of Alteration (CIA) was calculated from the elemental concentrated data.Weathering of basement rocks in Idi-Ayunre and Akure districts resulted in the formation of soil layer which ranged 0-0.4m, laterite layer 1.2-2.2m, and clayey zone 3.8-6.6m. Quartz, plagioclase, microcline, and biotite were the main minerals in parent rocks. Some of the primary minerals such as biotite and K-feldspar have been weathered to form kaolinite. Quartz, kaolinite and goethite formed the dominant minerals revealed by X-ray diffraction on decomposed granite sequences. The results from chemical analysis showed that Al and Fe have been enriched in weathering profiles of banded gneiss, migmatite gneiss and porphyritic granite whilst on the other hand Ca, Mg, Mn, Na, K, Ti were reported to be depleted.. Silica was relatively stable from basement to the topsoil in the profile. The CIA generally ranged between 80 - 99The lateritic profiles over banded gneiss, granite and porphyritic granite of Idi-Ayunre and Akure areas varied with the composition of the parent rocks. The thick clayey layers could be of great economic importance for the production of ceramics wares and for constructional purposes.


2001 ◽  
Vol 47 (157) ◽  
pp. 223-231 ◽  
Author(s):  
Yoshinori Iizuka ◽  
Hiroshi Satake ◽  
Takayuki Shiraiwa ◽  
Renji Naruse

AbstractDebris-laden basal ice is exposed along an ice cliff near Hamna Glacier, Sôya Coast, East Antarctica. The basal ice is about 6.8 m thick and shows conspicuous stratigraphic features. The upper 5.5 m consists of alternating layers of bubble-free and bubbly ice. δ values of the bubble-free ice layers are enriched by 2.4 ±1.0‰ (standard deviation) for δ18O compared to values of neighboring bubbly ice layers above, and slopes of δ18O vs δD are close to 8. Such layers are suggested to have been formed by refreezing of meltwater in an open system. In contrast, part of the bubbly ice layers shows neutral profiles for stable isotopes, suggesting that these ice masses are undisturbed ice-sheet ice which was not affected by melting and freezing. The massive alternating layers are thus considered to have been formed by folding of refrozen and non-melted layers. The lower 1.3 m consists predominantly of bubble-free massive ice. The profile of co-isotopic values shows a change of about 3.0‰ for δ18O at the interface between bubble-free and bubbly ice. Since the isotopic change occurred over a wider thickness than the upper 5.5 m, the basal ice is suggested to have been formed by refreezing of meltwater on a larger scale than the upper 5.5 m.


2017 ◽  
Author(s):  
Thomas Opel ◽  
Sebastian Wetterich ◽  
Hanno Meyer ◽  
Alexander Yu. Dereviagin ◽  
Margret C. Fuchs ◽  
...  

Abstract. To reconstruct palaeoclimate and palaeonvironmental conditions in the Northeast Siberian Arctic, we studied late Quaternary permafrost deposits at the Oyogos Yar coast (Dmitry Laptev Strait). New infrared stimulated luminescence ages for distinctive floodplain deposits of the Kuchchugui Suite (112.5 ± 9.6 kyr) and thermokarst lake deposits of the Krest Yuryakh Suite (102.4 ± 9.7 kyr), respectively, provide new substantial geochronological data and shed light on the landscape history of the Dmitry Laptev Strait region during the Marine Isotope Stage (MIS) 5. Ground ice stable-isotope data are presented together with cryolithological information for eight cryostratigraphic units and are complemented by data from nearby Bol'shoy Lyakhovsky Island. Our combined record of ice-wedge stable isotopes as proxy for past winter climate conditions covers the last about 200 thousand years and is supplemented by texture-ice stable isotopes which contain annual climate conditions overprinted by freezing processes. Our ice wedge stable-water isotope data indicate substantial variations in Northeast Siberian Arctic winter climate conditions during the late Quaternary, in particular between Glacial and Interglacial but also over the last millennia to decades. Stable isotope values of Ice Complex ice wedges indicate cold to very cold winter temperatures about 200 kyr ago (MIS7), very cold winter conditions about 100 kyr ago (MIS5), very cold to moderate winter conditions between about 60 and 30 kyr ago, and extremely cold winter temperatures during the Last Glacial Maximum (MIS2). Much warmer winter conditions are reflected by extensive thermokarst development during the MIS5c and by Holocene ice-wedge stable-isotopes. Modern ice-wedge stable isotopes are most enriched and testify the recent winter warming in the Arctic. Hence, ice-wedge based reconstructions of changes in winter climate conditions add substantial information to those derived from paleoecological proxies stored in permafrost and allow for distinguishing between seasonal trends of past climate dynamics. Future progress in ice-wedge dating and an improved temporal resolution of ice-wedge derived climate information may help to fully explore the palaeoclimatic potential of ice wedges.


Sign in / Sign up

Export Citation Format

Share Document