scholarly journals The Effect of Salicylic Acid Application on Reducing the Effect of Cold Stress Due to Delayed Planting in Rapeseed Genotypes (Brassica napus L.)

2021 ◽  
Vol 11 (3) ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Hamed KESHAVARZ ◽  
Seyed Ali Mohammad MODARRES SANAVY ◽  
Ramin SADEGH GHOL MOGHADAM

In this study the effect of foliar application of salicylic acid on the chlorophyll content, antioxidant enzymes activity, and the content of solute protein and proline were investigated in two canola varieties (Brassica napus L., cv ‘RGS’ and ‘Licord’) leaves during 0, 24, and 48 hours after salicylic acid treatment. The results showed that the content of total chlorophyll was decreased in ‘RGS’ cultivar during the experiment and this process was related with increasing of salicylic acid concentration. The activity of superoxide dismutase, peroxidase, and also lipid peroxidation were increased significantly after 48 hours compared with the first day. The results of catalase activity showed that, this trait was decreased 24 hours after salicylic acid treatment and this decrease was related with salicylic concentration. The content of protein in both cultivars slightly changed and plants treated with salicylic acid had more protein content, by contrast proline was greatly affected by salicylic acid treatment and its content was the highest 24 hours after treatment. According to the present findings the application of salicylic acid has useful effects on the biochemical traits of Brassica napus cultivars. Therefore it may be effective for the improvement of plant growth in cold regions.


2020 ◽  
Vol 33 (1) ◽  
pp. 13-20
Author(s):  
Muhammad Awais Ghani ◽  
Muhammad Mehran Abbas ◽  
Basharat Ali ◽  
Khurram Ziaf ◽  
Muhammad Azam ◽  
...  

Tri-genomic Brassica napus L.wasdeveloped by the cross between Brassica napusand Brassica nigra. The crop is animportant source of vegetable seed oil in Pakistan,after cotton. The low oilseed rape yield is attributed to high temperature in the production zones. Interspecific hybridization using these two speciescan be helpful to produce heat resistant hybrids. On the other hand, it has been found that foliar application of different plant growth regulators can be used to reduce the heat stress in Brassica. The objectiveof this studywas to test the response of three different tri-genomic hybrids to high temperature stressat seedling stage. Seedlings were foliar sprayed with 0.13 mM salicylic acid (SA) prior to exposure tohigh temperatureat two true leaf stage. The plants were harvested after 30 days of sowing for growth and biochemical analysis. Plants ofV38 showed the highest values for all morphological traits and biochemical activities among the threehybrids. In general, plants exposed to the temperature stress exhibited a significant decline in growth, chlorophyll content and enzyme activity.Foliar application of SA significantly improved leaf and root biomass under heat stress.Further, antioxidativeenzyme activities significantly increased in response to SA either compared to control or to plants exposed to temperature stress.It is concluded thatapplication of salicylic acid elevated activity of antioxidative enzymes and was helpful in mitigating the detrimental effects of high temperature inoil seed rape.


Author(s):  
Mahdi Khozaei ◽  
Shiva Boroumand Jazi

Oilseed plant, Brassica napus L. seedlings grown in hydroponic condition with different concentrations of Pb were treated with salicylic acid (SA) to investigate the role of exogenous salicylic acid in alleviating lead toxicity on biochemical and physiological activities of the plant. The results showed that application of different concentrations of Pb increased soluble sugars and reduced carbohydrate levels significantly in roots and shoots of the plants. The stress induced by application of Pb triggered significant inhibitory effects on growth and chlorophyll synthesis induced on the production of protein and proline and enhanced the levels of antioxidant activity. Salicylic acid (SA) treated plants showed alleviation increasing total dry mass, leaf area, shoot and root length as well as leaf total chlorophyll content in responses to Pb stress. Results revealed the importance of salicylic acid (SA) activity in enabling plants to reduce the soluble sugars and increase of insoluble sugar in heavy -metal-stressed plants. The content of proline and proteins were also reduced in plants were treated with salicylic acid. Our data provide evidence that salicylic acid treatment decreased the activity of antioxidant enzymes in plants were exposed to different levels of Pb.


2015 ◽  
Vol 52 (1-2) ◽  
pp. 19-36 ◽  
Author(s):  
Roya Razavizadeh

Abstract The effect of salicylic acid (SA) on the salt (NaCl) tolerance mechanism was studied in canola plants (oilseed rape, Brassica napus L.) by molecular and physiological experiments in plant tissue culture. Seeds of B. napus ‘Ocapy’ were germinated at 0, 50, and 100 mM NaCl on Murashige and Skoog (MS) medium containing different levels (0, 2, and 5 μM) of SA for 4 weeks. Total chlorophyll, carotenoid, and flavonoid content increased in response to interactive effects of SA and NaCl treatments at some concentrations. Proline content was increased under salt and SA treatments in shoot and root tissues. Salt alone and in combination with SA increased the total soluble protein content of shoots only, while the different concentrations of SA in the culture media affected variously the total soluble protein content. Protein patterns of shoots and roots showed some remarkable differences, based on gel electrophoresis and the consequent analysis of bands by ImageJ program. The relative expression of 15 and 12 protein bands in shoots and roots, respectively, differed under the applied treatments. In addition, the protein profile indicated that salinity and SA regulate the expression of salt-stress-inducible proteins as well as induced de novo synthesis of specific polypeptides. The findings may help to explain the salt tolerance mechanisms and to produce salt-tolerant canola plants.


2020 ◽  
Vol 21 (21) ◽  
pp. 8381
Author(s):  
Qinqin Zhou ◽  
Leonardo Galindo-González ◽  
Victor Manolii ◽  
Sheau-Fang Hwang ◽  
Stephen E. Strelkov

Clubroot, caused by Plasmodiophora brassicae Woronin, is an important soilborne disease of Brassica napus L. and other crucifers. To improve understanding of the mechanisms of resistance and pathogenesis in the clubroot pathosystem, the rutabaga (B. napus subsp. rapifera Metzg) cultivars ‘Wilhelmsburger’ (resistant) and ‘Laurentian’ (susceptible) were inoculated with P. brassicae pathotype 3A and their transcriptomes were analyzed at 7, 14, and 21 days after inoculation (dai) by RNA sequencing (RNA-seq). Thousands of transcripts with significant changes in expression were identified in each host at each time-point in inoculated vs. non-inoculated plants. Molecular responses at 7 and 14 dai supported clear differences in the clubroot response mechanisms of the two genotypes. Both the resistant and the susceptible cultivars activated receptor-like protein (RLP) genes, resistance (R) genes, and genes involved in salicylic acid (SA) signaling as clubroot defense mechanisms. In addition, genes related to calcium signaling and genes encoding leucine-rich repeat (LRR) receptor kinases, the respiratory burst oxidase homolog (RBOH) protein, and transcription factors such as WRKYs, ethylene responsive factors, and basic leucine zippers (bZIPs), appeared to be upregulated in ‘Wilhelmsburger’ to restrict P. brassicae development. Some of these genes are essential components of molecular defenses, including ethylene (ET) signaling and the oxidative burst. Our study highlights the importance of activation of genes associated with SA- and ET-mediated responses in the resistant cultivar. A set of candidate genes showing contrasting patterns of expression between the resistant and susceptible cultivars was identified and includes potential targets for further study and validation through approaches such as gene editing.


2019 ◽  
Vol 18 (12) ◽  
pp. 2742-2752 ◽  
Author(s):  
Lei YAN ◽  
Tariq Shah ◽  
Yong CHENG ◽  
Yan LÜ ◽  
Xue-kun ZHANG ◽  
...  

2016 ◽  
Vol 291 (3) ◽  
pp. 1053-1067 ◽  
Author(s):  
Chunfang Du ◽  
Kaining Hu ◽  
Shuanshi Xian ◽  
Chunqing Liu ◽  
Jianchun Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document