scholarly journals Adsorption of High Chromium Concentrations from Industrial Wastewater Using Different Agricultural Residuals

2020 ◽  
Vol 9 (1) ◽  
pp. 122-138

Hexavalent chromium Cr (VI) is a toxic material used in many industries such as tanneries and electroplating industries. Most of the previous researches studied the removal of chromium at lower concentrations up to 600 mg/L but did not tackle the behavior at higher concentrations, which resemble the real concentration of studied tanneries effluents. The present research is a comparative study of different agricultural low cost adsorbents in the removal of high Chromium concentration from industrial wastewater up to 1000 mg/L, compared to a commercial activated carbon. The tested adsorbents are (Banana Waste (BW), Sawdust (SD), Phragmites Australis (PA), Sugarcane Bagasse (SCB), Pea pod peels (PPP) and Rice straw (RS)). The materials were chemically pretreated with acid-alkali except BW was treated with acid only, to improve adsorbent metal binding capacity. Batch experiments were conducted to study the effect of pH, adsorbent dosage, contact time, initial Chromium concentration and temperature on the removal efficiency of Chromium from wastewater. The experiments were conducted in two sets, one for lower concentration (25-50-100-200-400) mg/L and the other for higher concentration (600-800-1000) to simulate the concentration of Chromium in tannery industry effluents. At 1000 mg/L initial concentration, BW achieved the optimum removal efficiency of 73.28% at pH = 3, adsorbent dosage = 25 g/L and contact time of 3 hours with the adsorption capacity was 39 mg/g. For SD at pH=2, 3 hours contact time, 10 g/L dosage, and 30oC the removal ratio was 64.83% and the adsorption capacity was 86.30 mg/g. The equilibrium data for various agricultural adsorbents was being tested with various adsorption isotherm models such as Langmuir, Freundlich and Tempkin. At low concentrations, AC, BW, PA and SCB follows Freundlich isotherm model while SD follows Langmuir isotherm model. At higher concentrations, BW, SD, PA follows Langmuir isotherm while SCB follows Tempkin isotherm model. To evaluate the mechanism of Cr adsorption on different adsorbents, Pseudo-first-order and Pseudo-second-order equations were used. The adsorption process follows Pseudo-second-order for all adsorbents, which confirms the chemisorption of Cr (VI) on different adsorbents.

RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78936-78946 ◽  
Author(s):  
Song Cheng ◽  
Libo Zhang ◽  
Hongying Xia ◽  
Jinhui Peng ◽  
Jianhua Shu ◽  
...  

A and B are Langmuir isotherm and pseudo-second-order model. We conclude that MB adsorption capacity of Fe-activated carbon is bigger than raw activated carbon, indicating that Fe-activated carbon has better MB removal efficiency.


2017 ◽  
Vol 76 (1) ◽  
pp. 219-235 ◽  
Author(s):  
Munawar Iqbal ◽  
Zahid Ali ◽  
M. Afzal Qamar ◽  
Abid Ali ◽  
Fida Hussain ◽  
...  

The present study was conducted to appraise the efficiencies of polyurethane ethylene sorbent (PES) and vinyl acetate sorbent (VAS) for nickel (Ni) adsorption. Process variables, i.e. Ni(II) ions initial concentration, pH, contact time and adsorbent dosage were optimized by response surface methodology (RSM) approach. The Ni(II) adsorption was fitted to the kinetic models (pseudo-first-order and pseudo-second-order) and adsorption isotherms (Freundlich and Langmuir). At optimum conditions of process variables, 171.99 mg/g (64.7%) and 388.08 mg/g (92.7%) Ni(II) was adsorbed onto PES and VAS, respectively. The RSM analysis revealed that maximum Ni(II) adsorption can be achieved at 299 mg/L Ni(II) ions initial concentration, 4.5 pH, 934 min contact time and 1.3 g adsorbent dosage levels for PES, whereas the optimum values for VAS were found to be 402 mg/L Ni(II) ions initial concentration, 4.6 pH, 881 min contact time and 1.2 g adsorbent dosage, respectively. The —OH and —C = O— were involved in the Ni(II) adsorption onto PES and VAS adsorbents. At optimum levels, up to 53.67% and 80.0% Ni(II) was removed from chemical industry wastewater using PES and VAS, respectively, which suggest that PES and VAS could possibly be used for Ni(II) adsorption from industrial wastewater.


2020 ◽  

<p>This study highlights the potential of steel slag, which is an industrial by-product of steel making industry as treatment media for metal-rich acid mine drainage (AMD). A series of batch adsorption studies has been done to demonstrate the effects of contact time, solution pH, initial concentration of metal, adsorbent dosage and size, and the effect of competing ions on the performance of steel slag. Results indicated that metal removal efficiencies were found to be &gt;90% when pH of AMD has reached near-neutral state (6.8-7.5) that were mostly occurring within the first 14 hours of contact time. Optimum equilibrium time was found at 24 hours, i.e. 99-100% of metals were removed. An increased adsorption capacity with decreased removal efficiency was observed as initial metal concentration increased. In contrast, increasing adsorbent dosage leads to increased removal efficiency. Fe was not affected despite the presence of other metal ions (100% removal) compared to Mn (59.3% removal) in mixed AMD solution. Adsorption behavior of Fe, Cu, Zn and Mn fits appropriately with Langmuir isotherm model with adsorption capacity of 1.06, 1.03, 0.97 and 0.73 mg g-1, respectively. The adsorption kinetics followed the pseudo-second-order kinetics and is supported by intra-particle diffusion process. Therefore, steel slag can be potentially used as an effective media for passive AMD remediation.</p>


2019 ◽  
Vol 80 (5) ◽  
pp. 827-835
Author(s):  
Jamileh Kondabey ◽  
Mohammad Hossein Ghorbani ◽  
Hossien Aghaie ◽  
Reza Fazaeli

Abstract Chromium Cr(III) is considered as a toxic pollutant in industrial wastewater. Photocatalytic processes can be used as an efficient method for the treatment of heavy metal wastewaters. This study was conducted to synthesize copper (II) oxide (CuO) with dendrite, leaf and feather morphologies. Synthesized CuO with dendrite and leaf morphologies were characterized by XRD, SEM, and BET/BJH and CuO with feather morphology by XRD, SEM, BET/BJH, FTIR, TEM and DRS techniques. Parameters such as morphology CuO, the contact time (h), and adsorbent dosage (g) in adsorption of Cr(III) and morphology CuO, pH and initial concentration of Cr(III) in the photocatalytic oxidation were investigated. The results demonstrate that CuO feather at 24 h contact time with 0.1 g adsorbent with an adsorption efficiency of 57.24% has the highest efficiency compared to CuO of dendrite and leaf. Oxidation results demonstrate that CuO feather at 2 h with 0.1 g adsorbent dosage and pH = 7 had 89.14% removal efficiency. Also, oxidation results demonstrate that CuO feather at 2 h with 0.1 g adsorbent dosage and pH = 8 had 99.99% removal efficiency, which indicates the high efficiency of the feather.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


2020 ◽  
Vol 83 (1) ◽  
pp. 27-36
Author(s):  
Mardawani Mohamad ◽  
Rizki Wannahari ◽  
Rosmawani Mohammad ◽  
Noor Fazliani Shoparwe ◽  
Kwan Wei Lun ◽  
...  

Used coffee grounds usually end up as landfill. However, the unique structural properties of its porous surface make coffee grounds can be transformed into biochar and performed as an alternative low cost adsorbent. Malachite green (MG) is a readily water soluble dye which is used extensively in textile and aquaculture industries. The mordant complex structures of MG generate destructive effects to animals and environment. In this study, adsorption of malachite green using spent coffee ground biochar as adsorbent was investigated. The experiments were designed in two methods: classical and optimisation by response surface methodology. Three parameters were studied, which are adsorbent dosage, contact time and pH while the responses in this study are malachite green removal (%) and adsorption capacity (mg/g). Optimisation studies were performed using response surface methodology. Quadratic model was chosen for both response and studied using central composite design. The correlation coefficient, R2 for the quadratic model of malachite green removal (%) and adsorption capacity (mg/g) were 0.95 and 0.99, respectively. The optimum malachite green removal (%) predicted was found at 99.27%, by using 0.12 g of adsorbent dosage, 43.05 minutes of contact time and pH of 9.45 at desirability of 1.0. The optimum adsorption capacity (mg/g) predicted was found at 118.01 mg/g, by using 0.02 g of adsorbent dosage, 60 minutes of contact time and pH of 10.24 at desirability of 0.98. So, it was concluded that the spent coffee ground biochar can be used as an effective adsorbent for malachite green removal from aqueous solution.


2020 ◽  
Vol 15 (2) ◽  
pp. 460-471
Author(s):  
T. Unugul ◽  
F. U. Nigiz

Abstract In this study; acid treated carbonized mandarin peel (CMP) adsorbent was prepared and the adsorption behaviour of the adsorbent for copper removal was investigated. In the adsorption studies the effects of initial metal concentration, solution pH, adsorbent dosage and contact time on the removal were investigated. As a result; the highest removal of 100% was achieved when the copper concentration in water was 5 mg/L and the adsorbent dosage was 3.75 g/L at a solution pH of 7. Isotherm studies were also done and the appropriate isotherm was obtained as the Freundlich isotherm. According to the kinetic studies, the copper adsorption onto CMP adsorbent was adopted to the pseudo-second-order adsorption kinetic. After HCl regeneration, the adsorbent maintained 94% of its activity.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 556
Author(s):  
Mustafa I. Khamis ◽  
Taleb H. Ibrahim ◽  
Fawwaz H. Jumean ◽  
Ziad A. Sara ◽  
Baraa A. Atallah

Alizarin red S (ARS) removal from wastewater using sheep wool as adsorbent was investigated. The influence of contact time, pH, adsorbent dosage, initial ARS concentration and temperature was studied. Optimum values were: pH = 2.0, contact time = 90 min, adsorbent dosage = 8.0 g/L. Removal of ARS under these conditions was 93.2%. Adsorption data at 25.0 °C and 90 min contact time were fitted to the Freundlich and Langmuir isotherms. R2 values were 0.9943 and 0.9662, respectively. Raising the temperature to 50.0 °C had no effect on ARS removal. Free wool and wool loaded with ARS were characterized by Fourier Transform Infrared Spectroscopy (FTIR). ARS loaded wool was used as adsorbent for removal of Cr(VI) from industrial wastewater. ARS adsorbed on wool underwent oxidation, accompanied by a simultaneous reduction of Cr(VI) to Cr(III). The results hold promise for wool as adsorbent of organic pollutants from wastewater, in addition to substantial self-regeneration through reduction of toxic Cr(VI) to Cr(III). Sequential batch reactor studies involving three cycles showed no significant decline in removal efficiencies of both chromium and ARS.


e-Polymers ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 99-109 ◽  
Author(s):  
Xiu-Juan Wu ◽  
Ji-De Wang ◽  
Li-Qin Cao

AbstractNovel chitosan/diatomite (CS/DM) membranes were prepared by phase inversion technique to remove anionic azo dyes from wastewater. The fabricated composite membranes exhibited the combined advantages of inorganic substances, diatomites, and polysaccharides. These composite membranes were characterized through Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. The mechanical properties of the membranes were also evaluated. Adsorption experiments were conducted under varied initial dye concentration, solution pH values, contact time, and adsorbent dosage. The results indicate that pH 3 is the optimal pH value for Orange G adsorption. The CS/DM membranes exhibit the highest adsorption capacity of 588 mg g-1 and removal rate of 94% under an initial dye concentration of 200 mg l-1, contact time of 6 h, and membrane dosage of 8 mg. Langmuir, Freundlich and Redlich-Peterson adsorption models were applied to describe the equilibrium isotherms at different dye concentrations. The equilibrium data was found to be fitted well to the Redlich-Peterson isotherm. Pseudo-first-order and pseudo-second-order kinetics models were used to describe the adsorption of membranes. The adsorption data were well explained by pseudo-second-order models, and also followed by the Elovich model. In addition, these membranes display high adsorption capacity and mechanical performance even after reused for seven times.


Sign in / Sign up

Export Citation Format

Share Document