Influence of the Proposal of a Photovoltaic System on Electrical Losses

Author(s):  
Alvaro Laurencio Pérez ◽  
◽  
Olga Pérez Maliuk ◽  
Igor Pérez Maliuk ◽  
◽  
...  

For the year 2017, renewable energy in the world through photovoltaic systems constitutes around 21% of the total energy generated through renewable sources. In this work, the impact represented by the proposal of a photovoltaic system connected to the grid in terms of reducing losses was analyzed. In the study, the calculation tools PVSyst and DIgSILENT PowerFactory were used to determine the power generation of the photovoltaic installation. Using the Radial 7.7 tool, the power losses were determined. The energy losses of the line were determined using empirical equations developed in the literature discussed. The commissioning of the installation represents a saving of 397 MWh/year. The impact that the installation represents on the grid is represented by a decrease in electrical energy losses and not in the decrease in power losses.

2014 ◽  
pp. 92-105
Author(s):  
P. Bezrukikh ◽  
P. Bezrukikh (Jr.)

The article analyzes the dynamics of consumption of primary energy and production of electrical energy in the world for 1973-2012 and the volume of renewable energy. It is shown that in the crisis year of 20 0 9 there was a significant reduction in primary energy consumption and production of electrical energy. At the same time, renewable energy has developed rapidly, well above the rate of the world economy growth. The development of renewable energy is one of the most effective ways out of the crisis, taking into account its production regime, energy, environmental, social and economic efficiency. The forecast for the development of renewable energy for the period up to 2020, compiled by the IEA, is analyzed. It is shown that its assessment rates are conservative; the authors justify higher rates of development of renewable energy.


Author(s):  
Я.М. КАШИН ◽  
Л.Е. КОПЕЛЕВИЧ ◽  
А.В. САМОРОДОВ ◽  
Ч. ПЭН

Описаны конструктивные особенности трехвходовой аксиальной генераторной установки (ТАГУ), преобразующей кинетическую энергию ветра и световую энергию солнца и суммирующей механическую, световую и тепловую энергию с одновременным преобразованием полученной суммарной энергии в электрическую. Показаны преимущества ТАГУ перед двухвходовыми генераторными установками. Дополнительное включение стабилизатора напряжения в схему ТАГУ позволило расширить область применения стабилизированной трехвходовой аксиальной генераторной установки за счет стабилизации ее выходного напряжения. The design features of the three-input axial generating installation (TAGI), which converts the kinetic energy of wind and light energy of the sun and sums the mechanical, light and thermal energy with the simultaneous conversion of the total energy into electrical energy, are described. The benefits of TAGI in front of the two-input generating installation shown. The additional introduction of a voltage regulator into the TAGI scheme allowed to expand the scope of the stabilized three-input axial generating installation by stabilizing its output voltage.


Author(s):  
Adeoye Samuel ◽  
◽  
Oladimeji TT ◽  

The goal of power sector in Nigeria is to efficiently and reliably transmit electrical power to all parts of the country which are made up of thirty-six states of the federation and the federal capital territory. The constituents of electrical power system are the generation, transmission, distribution and the utilization of electrical energy. There is gross power imbalance between the generation and the required power demand which has culminated into a defective economy in the last three decades. This paper therefore examines the power imbalance between the generation and power demand by the consumers and therefore stresses the need to harness the opportunity of renewable energy generation close to the gap between the power generation and power demand. This will help in transmitting and distributing efficient, effective, reliable power to consumers and improve both human and capital development. The availability of renewable energy sources such as sun, wind and small hydro power will be explored for the future of power generation in the country to fill in the gap between power generation and demand in Nigeria


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Huang Huanhai

The potential crisis of energy and the deterioration of ecological environment make the world's cumbersomedevelopment of renewable energy including new energy, including solar energy. Traditional energy in the coal, oil andnatural gas are evolved from ancient fossils, it is collectively referred to as fossil fuels. As the world's energy needscontinue to increase, fossil fuels will also be depleted, it is necessary to fi nd a new energy to replace the traditionalenergy. Solar energy is a clean renewable energy with mineral energy incomparable superiority. Modern society shouldbe a conservation-oriented society, and social life should also be a life-saving energy. At the same time, Premier WenJiabao also proposed on June 30, 2005 and stressed the need to speed up the construction of a conservation-orientedsociety. And solar energy as an inexhaustible new environmentally friendly energy has become the world's energyresearch work in the world an important issue. Is the world in the economic situation to take a simpler, economical,environmentally friendly and reliable building heating and heating energy-saving measures. This paper summarizes thecurrent global energy status, indicating the importance of solar power and prospects. Details of the various solar powergeneration methods and their advantages, and made a comparison of this power generation parameters. At the sametime pointed out that the diffi culties faced by solar power and solutions, as well as China's solar power of the favorableconditions and diffi culties. The future of China's solar energy made a prospect.


2016 ◽  
Vol 4 (2) ◽  
pp. 38
Author(s):  
Daisuke Sasaki ◽  
Gun Matsuo ◽  
Sameh El Khatib ◽  
Mikiyasu Nakayama

Although most countries in the world have been trying to introduce renewable energy into their power supplies to address issues related to the environment and energy security, the Middle East has the lowest overall renewable energy capacity in the world. However, there is currently a trend of accelerating renewable energy deployment with increased investment in the region for the purposes of improving energy security and independence and promoting long-term social and economic benefits. This study aims to examine the impact of implementing a feed-in tariff (FiT) in Abu Dhabi, United Arab Emirates. After a simulated test, it was found that the levelized cost of electricity (LCOE) and the current average unit cost of electricity were considerably divergent. That is to say, a large extra cost is incurred in order to deploy renewable energy in Abu Dhabi. In this context, the effectiveness of implementing a FiT in Abu Dhabi is confirmed. Furthermore, an estimation of the size of the renewable energy surcharge indicated that the impact of implementing a FiT would be enormous. For example, if the target rate of deploying renewable energy is set at 7%, a renewable energy surcharge equivalent to approximately one third of the total turnover of the electricity sector should be additionally imposed. It follows that the electricity rate will be raised by about thirty percent on average, unless subsidies are provided by the government.


2018 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Dimas Juniyanto ◽  
Tatyantoro Andrasto ◽  
Suryono Suryono

The need for electrical energy continues to increase every time. Concerns about the depletion of fossil energy reserves encourage the acceleration of the development of renewable energy use. One of renewable energy is the solar energy. Due to the irreversible irradiation conditions, it takes controls to keep the solar panel's maximum power. The most widely in Maximum Power Point Tracking (MMPT) is Perturb Algorithm and Observe (P&O) but P&O Algorithm has deficiency of oscillations when steady state and MPP trace errors when irradiation changes rapidly. In this paper proposed P & O-Fuzzy algorithm is a modification of conventional P & O to improve the efficiency of solar panels. This research uses Matlab for simulation and hardware implementation using microcontroller Arduino Uno and buck converter topology. The result of simulation and hardware implementation, conventional P & O has an average efficiency of 85.03% while MPPT modification with P & O-Fuzzy algorithm can improve MPP tracking efficiency with 89.67%.


2021 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sheldon Marshall ◽  
Randy Koon Koon

The integration of renewable energy (RE) into the overall energy mix of Caribbean nations has been increasing in recent times. The volatile nature of the carbon-based industry through fluctuations in prices of fossil fuel based-products renders it necessary to promote an aggressive energy profile transition to renewable energy, as this is crucial to energy security in these vulnerable Small Island Developing States (SIDS). The nation of Barbados has notably understood this reality and, as such, its government has endorsed the approach of 100% RE implementation by 2030. This paper explores three distinctive annual growth rate (AGR) scenarios to assess the impact on the expected power generation, economic and environmental parameters through the period of 2019-2030. Notable findings at a high case scenario for 2030 (at an AGR of 3%) projects a power generation of 1.343 Tera-watts-hour (TWh), which will displace 790,500 barrels of oil equivalent (boe), resulting in an abatement of approximately 0.95 million tons of carbon dioxide into the atmosphere.


Author(s):  
Archana Sudhakar Talhar ◽  
Sanjay B. Bodkhe

This paper gives a review of energy scenario in India and other countries. Today’s demand of the world is to minimize greenhouse gas emissions, during the production of electricity. Henceforth over the world, the production of electrical power is changing by introducing abundantly available renewable energy sources like sun and wind. But, because of the intermittent nature of sustainable power sources, the electrical power network faces many problems, during the transmission and distribution of electricity. For resolving these issues, Electrical Energy Storage (EES) is acknowledged as supporting technology. This paper discusses about the world electrical energy scenario with top renowned developed countries in power generation and consumption. Contribution of traditional power sources changed after the introduction of renewable energy sources like sun and wind. Worldwide Agencies are formed like International Energy Agency (IEA), The Central Intelligence Agency, (CIS) etc. The main aim of these agencies is to provide reliable, affordable and clean energy. This paper will discuss about the regulatory authority and government policies/incentives taken by different countries.  At the end of this paper, author focuses on obstacles in implementation, development and benefits of renewable energy.


2019 ◽  
Vol 11 (4) ◽  
pp. 1035 ◽  
Author(s):  
Hyo-Jin Kim ◽  
Jeong-Joon Yu ◽  
Seung-Hoon Yoo

In an era of energy transition involving an increase in renewable energy and a reduction in coal-fired power generation and nuclear power generation, the role of combined heat and power (CHP) as a bridging energy is highly emphasized. This article attempts to look empirically into the impact of increasing the share of renewable energy in total electricity generation on CHP share in total electricity generation in a cross-country context. Data from 35 countries during the period 2009–2015 were used, and the least absolute deviations estimator was applied to obtain a more robust parameter estimate. The results showed that a 1%p increase in the share of renewable energy significantly increased the CHP share by 0.87%p. Therefore, the hypothesis that CHP serves as bridge energy in the process of energy transition was established.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4326 ◽  
Author(s):  
Simplice Igor Noubissie Tientcheu ◽  
Shyama P. Chowdhury ◽  
Thomas O. Olwal

The increasing demand to reduce the high consumption of end-use energy in office buildings framed the objective of this work, which was to design an intelligent system management that could be utilized to minimize office buildings’ energy consumption from the national electricity grid. Heating, Ventilation and Air Conditioning (HVAC) and lighting are the two main consumers of electricity in office buildings. Advanced automation and control systems for buildings and their components have been developed by researchers to achieve low energy consumption in office buildings without considering integrating the load consumed and the Photovoltaic system (PV) input to the controller. This study investigated the use of PV to power the HVAC and lighting equipped with a suitable control strategy to improve energy saving within a building, especially in office buildings where there are reports of high misuse of electricity. The intelligent system was modelled using occupant activities, weather condition changes, load consumed and PV energy changes, as input to the control system of lighting and HVAC. The model was verified and tested using specialized simulation tools (Simulink®) and was subsequently used to investigate the impact of an integrated system on energy consumption, based on three scenarios. In addition, the direct impact on reduced energy cost was also analysed. The first scenario was tested in simulation of four offices building in a civil building in South Africa of a single occupant’s activities, weather conditions, temperature and the simulation resulted in savings of HVAC energy and lighting energy of 13% and 29%, respectively. In the second scenario, the four offices were tested in simulation due to the loads’ management plus temperature and occupancy and it resulted in a saving of 20% of HVAC energy and 29% of lighting electrical energy. The third scenario, which tested integrating PV energy (thus, the approach utilized) with the above-mentioned scenarios, resulted in, respectively, 64% and 73% of HVAC energy and lighting electrical energy saved. This saving was greater than that of the first two scenarios. The results of the system developed demonstrated that the loads’ control and the PV integration combined with the occupancy, weather and temperature control, could lead to a significant saving of energy within office buildings.


Sign in / Sign up

Export Citation Format

Share Document