scholarly journals Effect of Temperature on Calorific Value of Pyrolyzed Empty Fruit Bunch (Efb) Derived Biochar

Author(s):  
Norhana Mohamed Rashid ◽  
◽  
Nabilah Zaini ◽  

The residues from the oil palm industry are the main contributors to biomass waste in Malaysia, and these wastes require extra attention with respect to handling. A survey of the literature indicates that most of them are handled with unsatisfactory practices that negatively impact the environment. Therefore, it is very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels via pyrolysis technology. Due to its high carbon content, rich in lignin and low cost, empty fruit bunch (EFB) shows potential to be a good precursor for the production of biochar. The pyrolysis temperature greatly affects biochar properties and its potential usage. Many researches work on biochar have been carried out to assess its potential by investigating its characteristics. The most common thermochemical technique to produce biochar is pyrolysis, during which the organic components are decomposed at adjustable temperature in a nitrogen-limited atmosphere. The focus of this study is to identify the effect of temperature (300, 350, 400, 450 and 500 °C) on calorific value of pyrolyzed EFB derived biochar. Eight experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. The factor studied which temperature was significant with p-values < 0.0001. The value of R2 was 0.9633 which indicated that the temperature showed high correlation to the calorific value of biochar from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical calorific value. The maximum biochar calorific value was achieved at pyrolysis temperature of 500 °C. Char yield was obtained highest at 300°C around 53.36 wt% and started to decrease as temperature increase. Result of this experiment revealed that the calorific value of biochar increases as the temperature increases while the yield percentage of biochar decreases as the temperature increases. The yield of biochar decreases with temperature because of the secondary tar reactions of the volatiles, such as thermal cracking, that favors the increase of gas yield.

2014 ◽  
Vol 695 ◽  
pp. 228-231 ◽  
Author(s):  
K. Azduwin ◽  
Mohd Jamir Mohd Ridzuan ◽  
A.R. Mohamed ◽  
S.M. Hafis

Uncontrolled uses of fossil fuels lead to serious energy problems and since Malaysia is one of the largest producers of palm oil in the world, it has caused a lot of waste such as empty fruit bunches (EFB) which can actually be converted into renewable energy via pyrolysis. In this work, firstly the characterizations of the EFB were analyzed such as elemental, proximate and component analysis. The pyrolysis experiment of empty fruit bunch using vertical fixed-bed reactor was conducted at different pyrolysis temperature range from 300 - 600 °C and the particle size of EFB was also varied from 125-250 μm with constant nitrogen flow rate of 100 cm3/min, heating rate of 30 °C/min, and 30 minutes hold time. For the effect of temperature, the optimum pyrolysis temperature was 500 °C to produce maximum yield of bio-oil which is 39.2 wt. % while 46.13 wt. % is the highest bio-oil yield produced at size of 500-710 μm for the effect of particle size. The analysis on bio-oil was conducted by using Fourier Transform Infrared (FTIR) with the results shows for the presents of phenol/alcohol group, ketones and C-O bond. The bio-oil obtained is in the acidic condition with pH 3.5.


2016 ◽  
Vol 20 (3) ◽  
pp. 115-124
Author(s):  
Marta Marczak ◽  
Mateusz Karczewski ◽  
Dorota Makowska ◽  
Piotr Burmistrz

AbstractCombustion and co-combustion of biomass from different sources is one of the most popular technologies applied in Poland. It allows management of numerous industrial, communal and agricultural waste. Organic waste constitutes one of the richest sources of cheap biomass solid fuels since they are very popular. The paper includes an assessment of practical use of biomass waste: hazelnut shell and pistachio nut shell. The impact of pyrolysis temperature (300, 450 and 550°C) of the investigated biomass on the quality of the obtained biochar was determined and the optimal temperature of this process was defined. The quality of the investigated biomass was analysed on account of its use for energy purposes. Numerous advantageous properties of the obtained materials were found out, for instance: low content of ash and a noticeable increase of the calorific value with an increase of the pyrolysis temperature.


2020 ◽  
Vol 81 (12) ◽  
pp. 2533-2544
Author(s):  
Zhanbiao Yang ◽  
Xincong Liu ◽  
Mengdi Zhang ◽  
Lixia Liu ◽  
Xiaoxun Xu ◽  
...  

Abstract We analyzed the effects of pyrolysis temperature and duration on the physiochemical properties and Cd(II) adsorption capacity of spent tea leaves (STL) biochar. The STL biochar was produced by pyrolysis at 300, 400, 500 and 600 °C for 1 and 2 h. The pyrolysis temperature was positively correlated to the ash content, pH, electrical conductivity, specific surface area (SBET), pore volume (PV) and C content, and negatively with the total yield, O, H and N content, and the O/C and H/C atomic ratios. Furthermore, the surface porosity of STL biochar increased, the density of oxygen-containing functional groups decreased, and the formation of aromatic structures was enhanced at higher pyrolysis temperatures. The adsorption of Cd(II) onto STL biochar fitted with the pseudo-second-order kinetics and Langmuir isotherms model. The STL biochar produced at 600 °C for 2 h showed the maximum Cd(II) adsorption capacity of 97.415 mg/g. In addition, Cd(II) adsorption was mainly physical and occurred in monolayers. Thus, STL biochar is a suitable low-cost adsorbent for wastewater treatment.


2021 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Jen Hua Ling ◽  
Yong Tat Lim ◽  
Wen Kam Leong ◽  
How Teck Sia

Oil palm empty fruit bunch (EFB) is a biomass waste abundantly produced by the oil palm industry in Malaysia. To minimize the environmental impacts, it needs to be properly disposed of or being rapidly consumed as a raw material of another industry. This study investigated the feasibility of substituting EFB in cement bricks, which is in high demand by the construction industry. A total of 120 specimens having the cement-to-sand (c/s) ratios of 1:2.5 and 1:3 were produced in the laboratory. EFB fibre was used to replace 10% to 25% of sand in the mix by volume. The specimens were tested for the compressive strength, density and water absorption after 28 days of casting. For the mix of 1:2.5 c/s ratio, 25% EFB content reduced 22% of density, decreased 59% of compressive strength and increased 43% of water absorption capacity of normal cement brick. This was mainly attributed to the porous cellular structure of EFB fibre that created a large volume of voids in the mix. Based on the feasibility evaluation, EFB fibre can only replace up to 15% and 10% of sand in the mixes of 1:2.5 and 1:3 c/s ratios respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bidayatul Armynah ◽  
Dahlang Tahir ◽  
Monalisa Tandilayuk ◽  
Zuryati Djafar ◽  
Wahyu H. Piarah

Biochars from bamboo leaves as a potential energy resource were synthesized by annealing in the oxygen-free environment. Samples were characterized using proximate analysis, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Heating temperatures are 250°C, 300°C, and 350°C and for each temperature, the time was varied between 30, 60, and 90 minutes. The heating time for 30 minutes results in FC 30.777% and calorific value 15 MJ/Kg at temperature 250°C and decreased to 4.004% and 6 MJ/Kg at temperature 350°C, respectively. EDS shows the time of heating is an important parameter which shows the carbon and nitrogen contents were decreasing with the increase in the heating time, and silicon and oxygen contents were increasing with increase in the heating time. XRD shows broad (002) reflections between 20° and 30°, which indicated disordered carbon with small domains of coherent and parallel stacking of the graphene sheets, which is consistent with surface morphology of the SEM image. The experimental results indicated that heating at 300°C for 30 minutes is an effective and efficient parameter for fabrication of low-cost carbon from bamboo leaves which is a source of useful energy.


Alloy Digest ◽  
2003 ◽  
Vol 52 (12) ◽  

Abstract Algoma AR225 is a carbon steel developed primarily to supply a low-cost material for high-abrasion applications. It is furnished in the form of as-rolled plate with a relatively high carbon content (0.35-0.45%). AR-225 is sold on the basis of chemical analysis only; the number 225 signifies the approximate Brinell hardness. On thicknesses one-half inch and over, this Brinell value may be lower than 225 because of higher finishing temperatures. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-138. Producer or source: Algoma Steel Corporation Ltd.


2017 ◽  
Vol 98 ◽  
pp. 189-195 ◽  
Author(s):  
Bin Zhou ◽  
Zhanghong Wang ◽  
Dekui Shen ◽  
Fei Shen ◽  
Chunfei Wu ◽  
...  

Author(s):  
T. G. Ambaye ◽  
M. Vaccari ◽  
E. D. van Hullebusch ◽  
A. Amrane ◽  
S. Rtimi

AbstractCurrently, due to the rapid growth of urbanization and industrialization in developing countries, a large volume of wastewater is produced from industries that contain chemicals generating high environmental risks affecting human health and the economy if not treated properly. Consequently, the development of a sustainable low-cost wastewater treatment approach has attracted more attention of policymakers and scientists. The present review highlights the recent applications of biochar in removing organic and inorganic pollutants present in industrial effluents. The recent modes of preparation, physicochemical properties and adsorption mechanisms of biochar in removing organic and inorganic industrial pollutants are also reviewed comprehensively. Biochar showed high adsorption of industrial dyes up to 80%. It also discusses the recent application and mechanism of biochar-supported photocatalytic materials for the degradation of organic contaminants in wastewater. We reviewed also the possible optimizations (such as the pyrolysis temperature, solution pH) allowing the increase of the adsorption capabilities of biochar leading to organic contaminants removal. Besides, increasing the pyrolysis temperature of the biochar was seen to lead to an increase in its surface area, while it decreases their amount of oxygen-containing functional groups, consequently leading to a decrease in the adsorption of metal (loid) ions present in the medium. Finally, the review suggests that more research should be carried out to optimize the main parameters involved in biochar production and its regeneration methods. Future efforts should be also carried out towards process engineering to improve its adsorption capacity to increase the economic benefits of its implementation.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 160
Author(s):  
Abdulaziz A. Alomair ◽  
Yousef Alqaheem

Post-treated mordenite membranes were prepared using sucrose (C12H22O11) as a carbon precursor to block any pinholes and defects in the zeolite layer. The pervaporation (PV) process was used to separate ethanol from the water. The effects of the sucrose concentration and the pyrolysis temperature (650–850 °C) were investigated, and the resulting high separation performance compared to those post/pre-treated membranes was reported in the literature. In this study, mordenite carbon membranes yielded a water/ethanol separation factor of 990.37 at a water flux of 9.10 g/m2h. The influence of the operating temperature on the performance of the membrane also was considered. It was concluded that the selective adsorption of water through zeolite pores was achieved. The entire preparation procedure was achieved using a rapid, low-cost preparation process.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 94
Author(s):  
Istikamah Subuki ◽  
Aiman Nabilah Abdul Malek ◽  
Saidatul Husni Saidin ◽  
Mazura Md. Pisar

Supercritical fluid extraction (SFE) offer faster extraction process, decreased solvent usage and more selectivity on desired compounds. In this present study, the influence of pressure (100, 200 and 300 bar) and temperature (40, 50 and 60˚C) on the Senna alata crude yield were investigated with fixed supercritical carbon dioxide (SC-CO2) at the flow rate of 35 g/min. The parameters were optimised and modelled using response surface methodology (RSM) and central composite design (CCD). The analysis of variance (ANOVA) experimental design consists of 13 experimental runs with 5 replicates at the central points. Well-fitting quadratic model were successfully established for crude extract through backward elimination. The optimum crude extract yield pointed out by RSM was at the pressure of 300 bar and temperature 40˚C respectively. Extraction yields based on SC-CO2 varied in the range of 0.28 to 3.62%. The highest hyaluronidase inhibition activity and total flavonoids content obtained by S.alata crude extracts were 41.19% and 52.53% w/w, respectively. SC-CO2 proves to have great potential for extraction of yield, hyaluronidase inhibition activity and total flavonoids content for S.alata.  


Sign in / Sign up

Export Citation Format

Share Document