scholarly journals Potentials of Biochars Derived from Bamboo Leaf Biomass as Energy Sources: Effect of Temperature and Time of Heating

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bidayatul Armynah ◽  
Dahlang Tahir ◽  
Monalisa Tandilayuk ◽  
Zuryati Djafar ◽  
Wahyu H. Piarah

Biochars from bamboo leaves as a potential energy resource were synthesized by annealing in the oxygen-free environment. Samples were characterized using proximate analysis, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Heating temperatures are 250°C, 300°C, and 350°C and for each temperature, the time was varied between 30, 60, and 90 minutes. The heating time for 30 minutes results in FC 30.777% and calorific value 15 MJ/Kg at temperature 250°C and decreased to 4.004% and 6 MJ/Kg at temperature 350°C, respectively. EDS shows the time of heating is an important parameter which shows the carbon and nitrogen contents were decreasing with the increase in the heating time, and silicon and oxygen contents were increasing with increase in the heating time. XRD shows broad (002) reflections between 20° and 30°, which indicated disordered carbon with small domains of coherent and parallel stacking of the graphene sheets, which is consistent with surface morphology of the SEM image. The experimental results indicated that heating at 300°C for 30 minutes is an effective and efficient parameter for fabrication of low-cost carbon from bamboo leaves which is a source of useful energy.

2015 ◽  
Vol 4 (2) ◽  
pp. 32-38
Author(s):  
Julham Prasetya Pane ◽  
Erwin Junary ◽  
Netti Herlina

The demand of renewable energy resources has been increasing. Briquette is one of the alternative energy resource which can be produced from utilization of biomass. This research aims to obtain a briquette from sugar palm frond, to obtain the effect of adhesive concentration of cassava starch and addition of lime on the quality of briquettes. This research used the batch method. Research variabels are the adhesive concentration of cassava starch in 0%, 10%, 20% and 30% (w/w) and the addition of lime in 0%, 1%, 3% and 5% (w/w) based on the weight of char powder. General materials are sugar palm (Arenga pinnata) frond, cassava starch and lime, and the general tools are furnace, briquette printer, oven, moisture analyzer, universal testing machine and bomb calorimeter. Briquetting process was started with sugar palm fronds preparation then they’re carbonized at 350 oC for 2 hours. Product of carbonization as a charcoal which is added by a cassava starch adhesive and lime then they’re printed or shaped and dried to be a briquette. Analysis used is the proximate analysis of the test parameters moisture content, ash content, volatile combustion matter content, carbon content, calorific value and compressive strength. The best briquette is with adhesive concentration in 0% and addition of lime in 5% with the calorific value 6502,379 cal/g, 45,56% fixed carbon, 6,44% moisture, 18,00% ash, 30,00% volatile combustion matter and 59,141 kg/cm2 compressive strength.


2019 ◽  
Vol 120 ◽  
pp. 02002
Author(s):  
Rose Ann P. Lomeda-De Mesa ◽  
Allan N. Soriano ◽  
Ariziel Ruth D. Marquez ◽  
Adonis P. Adornado

Utilizing and improving the quality of Philippine indigenous coal is getting more important in order to sustain the country’s high dependence on coal over the next 10 years and to keep up with the country’s growing energy demands. Also, environmental problems and negative impacts of agricultural wastes are drawing more and more attention since the quantity of agricultural wastes has been rising rapidly all over the world. In the Philippines, sugarcane (Saccharum officinarum) bagasse has been identified as one of the significant contributor to the country’s biomass energy resource. Hence, in this study, coal blending technique has adopted as a proper approach to improve the quality of indigenous coal reserves while concurrently reducing and reusing agricultural wastes. This paper aimed to establish recommended blending ratios for Semirara coal, a sub-bituminous type of coal from Semirara Island in the province of Antique, Philippines and sugarcane (S. officinarum) bagasse. Proximate analysis, ultimate analysis, and calorific value were determined to characterize and understand the physical conditions and coal properties during combustion. Results showed that blending torrefied sugarcane (S. officinarum) bagasse with Semirara coal would generally improve its quality in terms of its combustion properties thereby making these combinations of coal and biomass advantageous.


Author(s):  
Norhana Mohamed Rashid ◽  
◽  
Nabilah Zaini ◽  

The residues from the oil palm industry are the main contributors to biomass waste in Malaysia, and these wastes require extra attention with respect to handling. A survey of the literature indicates that most of them are handled with unsatisfactory practices that negatively impact the environment. Therefore, it is very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels via pyrolysis technology. Due to its high carbon content, rich in lignin and low cost, empty fruit bunch (EFB) shows potential to be a good precursor for the production of biochar. The pyrolysis temperature greatly affects biochar properties and its potential usage. Many researches work on biochar have been carried out to assess its potential by investigating its characteristics. The most common thermochemical technique to produce biochar is pyrolysis, during which the organic components are decomposed at adjustable temperature in a nitrogen-limited atmosphere. The focus of this study is to identify the effect of temperature (300, 350, 400, 450 and 500 °C) on calorific value of pyrolyzed EFB derived biochar. Eight experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. The factor studied which temperature was significant with p-values < 0.0001. The value of R2 was 0.9633 which indicated that the temperature showed high correlation to the calorific value of biochar from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical calorific value. The maximum biochar calorific value was achieved at pyrolysis temperature of 500 °C. Char yield was obtained highest at 300°C around 53.36 wt% and started to decrease as temperature increase. Result of this experiment revealed that the calorific value of biochar increases as the temperature increases while the yield percentage of biochar decreases as the temperature increases. The yield of biochar decreases with temperature because of the secondary tar reactions of the volatiles, such as thermal cracking, that favors the increase of gas yield.


2021 ◽  
Vol 912 (1) ◽  
pp. 012010
Author(s):  
C A Ávalos-Betancourt ◽  
L B López-Sosa ◽  
M Morales-Máximo ◽  
A Aguilera-Mandujano ◽  
J C Corral-Huacuz ◽  
...  

Abstract The present study evaluates the potential use of pelagic Sargassum spp. as a solid biofuel. Massive landings of these brown algae across the Atlantic have produced ecologic and economic problems since 2011. Sargassum biomass valorization could compensate for economic losses and reduce environmental impacts. The production of biofuels could be one of its applications. This research consists of two stages: (a) the physical-energy characterization: morphology, humidity, ash, volatiles, and calorific value, and (b) an estimate of the energy potential of these algae, considering their removal from 600 kilometers of coastline along the Mexican Caribbean coast. An analysis of sustainability indicators considering socioeconomic aspects shows the benefits of using this resource in comparison with other types of low-cost biofuels that produce low environmental impact. The results show the pertinence of using Sargassum spp. as an alternative energy resource with low cost, low environmental impact, high accessibility, and added value for localities along the Mexican Caribbean.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


2019 ◽  
Vol 276 ◽  
pp. 01031 ◽  
Author(s):  
Partogi H Simatupang ◽  
Petrus Lubalu ◽  
Herry L Sianturi ◽  
Wilhelmus Bunganaen

Kupang City in Timor Island of Indonesia, as a semiarid area, has abundant solar energy sources. Based on climatology data of Kupang City in 2013-2015, the minimum and maximum average temperatures in Kupang City range from 19.3-34.8oC. Besides, dry seasons last for about 8 months (April-November). This abundance of solar energy is a potential energy resource for the manufacturing of environmentally friendly ferrogeopolymer elements. Based on previous research, the production of geopolymer material can be done optimally with dry curing treatment at 60-80oC for less than 48 hours. Therefore, in this paper, a low-cost, energy efficient oven operated by a solar energy collector was developed. This paper describes a feasibility study of the use of solar energy for curing ferro-geopolymer elements. The ferro-geopolymer elements made were beams with length 600 mm, width 100 mm and height 100 mm. Wire meshes with 6x6mm of opening were used in 5 layers. The solar energy collector system used as an oven was a zinc coated drum which was painted black outwardly and was covered by a glass plate. Using this oven, it was possible to increase the ambient temperature by 1.62 to 2,37 times. Furthermore, this oven can also increase the flexure strength of ferrogeopolymer elements about ± 25.34%. This paper shows good potential use of solar energy in the manufacturing of ferro-geopolymer elements in the semiarid region.


2016 ◽  
Author(s):  
A. Ribeiro ◽  
C. Vilarinho ◽  
J. Araújo ◽  
J. Carvalho

The increasing of world population, industrialization and global consuming, existing market products existed in the along with diversification of raw materials, are responsible for an exponential increase of wastes. This scenario represents loss of resources and ultimately causes air, soils and water pollution. Therefore, proper waste management is currently one of the major challenges faced by modern societies. Textile industries represents, in Portugal, almost 10% of total productive transforming sector and 19% of total employments in the sector composed by almost 7.000 companies. One of the main environmental problems of textile industries is the production of significant quantities of wastes from its different processing steps. According to the Portuguese Institute of Statistics (INE) these industries produce almost 500.000 tons of wastes each year, with the textile cotton waste (TCW) being the most expressive. It was estimated that 4.000 tons of TCW are produced each year in Portugal. In this work an integrated TCW valorisation procedure was evaluated, firstly by its thermal and energetic valorisation with slow pyrolysis followed by the utilization of biochar by-product, in lead and chromium synthetic wastewater decontamination. Pyrolysis experiments were conducted in a small scale rotating pyrolysis reactor with 0.1 m3 of total capacity. Results of pyrolysis experiments showed the formation of 0,241 m3 of biogas for each kilogram of TCW. Results also demonstrated that the biogas is mostly composed by hydrogen (22%), methane (14 %), carbon monoxide (20%) and carbon dioxide (12%), which represents a total high calorific value of 12.3 MJ/Nm3. Regarding biochar, results of elemental analysis demonstrated a high percentage of carbon driving its use as low cost adsorbent. Adsorption experiments were conducted with lead and chromium synthetic wastewaters (25, 50 and 100 mg L−1) in batch vessels with controlled pH. It was evaluated the behaviour of adsorption capacity and removal rate of each metal during 120 minutes of contact time using 5, 10 and 50 g L−1 of adsorbent dosage. Results indicated high affinity of adsorbent with each tested metal with 78% of removal rate in chromium and 95% in lead experiments. This suggests that biochar from TCW pyrolysis may be appropriated to wastewaters treatment, with high contents of heavy metals and it can be an effective alternative to activated carbon.


1939 ◽  
Vol 4b (5) ◽  
pp. 478-490
Author(s):  
John Lawson Hart ◽  
Albert L. Tester ◽  
Desmond Beall ◽  
John P. Tully

Analysis by standard methods of samples of Clupea pallasii from different seasons and localities in British Columbia showed the following ranges in composition: water, 64.2 to 80.2%; oil, 4.1 to 19.4%; protein, 10.1 to 16.8%; ash, 1.9 to 2.8%. Oil content is highest in summer, declines during the fall and winter, and falls to a minimum after spawning time in early spring. There is an accompanying decline in the weight of the fish. Herring are highly variable in calorific value (2.41 to 0.94 Calories per gram). Potential oil yields on reduction as high as 30 gallons per ton are indicated with a minimum of 7 gallons per ton. Average condition factors for samples were determined by averaging the individual condition factors obtained from [Formula: see text], when C is the condition factor, W is weight in grams, L is length in millimetres, and 3.26 is the exponent in the empirically fitted equation W = CLn. This condition factor was found to be positively correlated with oil content and to follow in general the same seasonal trend.


2018 ◽  
Vol 34 (5) ◽  
pp. 2577-2582
Author(s):  
Mohamed H. H. Mahmoud ◽  
Mahmoud M. Hessien

Nanomagnetic ferrite materials are of great technological importance in several industries due to their high performance, ease of preparation and low cost. The ferrite properties are based on composition, structure and methods of preparation. Nickel ferrite, NiFe2O4, was prepared by the simple microwave assisted-hydrothermal method. Nickel chloride and ferric chloride solutions (stoichiometric ratio of 1: 2 respectively) were mixed, the pH was raised to 10.5 and the mixture was heated at 180 °C in a closed Teflon vessel using a microwave oven at different periods of time (2 - 24 h). The formed powders were examined by XRD, TEM, and VSM. The intensity of nickel-ferrite in the XRD patterns increased with time owing to increase in crystallinity of the formed phase. The TEM images showed that, the size was in the range of 20-40 nm and contents of fine particles noticeably decreased with increasing reaction time to 4-6 hrs and contents of more regular cubic particles are formed. The NiFe2O4 magnetization was continuesly increased with raising the heating time from 2h (9 emu/g) to 24 h (43 emu/g) which may be due to the high purity and crystallinity of the formed NiFe2O4. The results showed that the properties of the formed ferrite can be tailored by controlling the heating time. Microwave assisted co-precipitation followed by hydrothermal digestion resulted in a substance of good homogeneity and crystallinity at a short time.


2021 ◽  
Author(s):  
Syazmi Zul Arif Hakimi Saadon ◽  
Noridah Osman ◽  
Moviin Damodaran ◽  
Shan En Liew

Abstract Interest in torrefaction has improved along the recent years and it has been studied extensively as a mean of preparing solid fuels. Biomass to be considered as a renewable source of energy must endeavor improvement continuously and where it is more sustainable going forward in which can come from waste product, wild and cultivated plant. The aim of this study is to investigate the effect of temperature and residence time of wild Napier grass and Oil palm petiole from waste. The torrefied samples were derived by pyrolysis reactor mimicking torrefaction procedure. The temperature parameter ranges between 220 and 300 ℃ while residence time parameter is from 10 minutes to 50 minutes of reaction. It was found that as temperature and time increasing, moisture content and amount of O and H atoms decreases as well as both mass and energy yield, but calorific value and the energy density increase along with both two parameters. Between the two parameters, the temperature variation shows more significant changes to the torrefied samples as compared time. The optimized temperature and time are found to be 260 ℃ and 30 minutes, respectively. Remarkably, the usage of pyrolyzer as torrefaction reaction has proved to be a good option since they share similar characteristics while can also produce product with similar properties reflecting torrefaction process.


Sign in / Sign up

Export Citation Format

Share Document