Screening and Identification of Laccase Producing Fungi from Environmental Samples

2021 ◽  
Vol 6 (1) ◽  
pp. 91-98
Author(s):  
A. Bello ◽  
◽  
J. B. Ameh ◽  
D. A. Machido ◽  
A. I. Mohammed-Dabo

Laccases are oxidases with broad substrate specificity and ability to oxidize various phenolic and non-phenolic compounds. This study was carried out to isolate and characterizes laccase producing fungi from environment samples. Soil and decaying wood samples were collected from different locations within Ahmadu Bello University, Zaria Main campus. Suspensions of the samples (1 g in 10 mL sterile distilled water) were serially diluted, inoculated onto Potato Dextrose Agar (PDA) containing 0.01% Chloramphenicol and incubated for 7 days at 30oC.The fungal isolates were characterized macroscopically and microscopically with the aid of an atlas. The identified fungal isolates were screened for laccase production by inoculating onto PDA containing 0.02% Guaiacol, 1mM ABTS (2 2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and 0.5% Tannic acid as indicator compounds and incubated at 250C for 7 days. The laccase producing isolates were confirmed molecularly by ITS rDNA sequence analysis using the FASTA algorithm with the Fungus database from the European Bioinformatics Institute (EBI).A total of 25 fungal species (11 from soil and 14 from decaying wood samples) were isolated. Two isolates from the soil origin identified as Curvularia lunata SSI7 (Accession No. QIE06317.1) and Fusarium clade VII SSI3 (Accession No. GQ505677) were found to produce laccase where Curvularia lunata SSI7 was able to oxidize all the indicator compounds used for the screening. Fusarium clade VII SSI3 was able to oxidize only 0.5% Tannic acid. Laccase producing Curvularia lunata and Fusarium clade VII were isolated from soil samples collected from ABU Zaria Main Campus. Keywords: laccase, fungi, soil, decaying wood

2020 ◽  
Vol 4 (3) ◽  
pp. 224-229
Author(s):  
A. Nuhu ◽  
Ibrahim Hussaini ◽  
S. Gide ◽  
G. Anas ◽  
A. Madika

One of the limitations of large scale application of laccase (EC 1.10.3.2) is the inability to produce them in large quantity at an affordable cost. This study was carried out to screen indigenous fungi for their ability to produce laccase using the locally available substrate. Five soil samples were collected and diluted serially, 0.1 mL of the 10-5 and 10-6 dilutions were inoculated onto Potato dextrose agar (PDA) plates. The fungal isolates were identified based on their macroscopic and microscopic characteristics. The isolates were then screened for laccase production by growing them on PDA containing tannic acid as an indicator compound. The laccase producing isolates were further screened for their ability to utilize corn cob as a substrate for laccase production. Ten fungal species were isolated and identified as Trichoderma viridae (3), Trichoderma harzianum (3), Aspergillus niger (2), Fusarium sp. (1) and Penicillium sp. (1). Only two of the isolates namely T. viridae and T. harzianum were found to be laccase producers. Both laccase producing fungal species were able to utilize corn cob as substrate for laccase production. T. viridae had higher enzyme activity (2.228 U/mL) than T. harzianum (2.1583 U/mL) after 9 days of incubation. Laccase producing fungi were isolated in this study and they were able to use corn cob as substrate for laccase production.


2019 ◽  
Vol 18 (9) ◽  
pp. 1135-1154 ◽  
Author(s):  
Alejandra Giraldo ◽  
Margarita Hernández-Restrepo ◽  
Pedro W. Crous

Abstract During 2017, the Westerdijk Fungal Biodiversity Institute (WI) and the Utrecht University Museum launched a Citizen Science project. Dutch school children collected soil samples from gardens at different localities in the Netherlands, and submitted them to the WI where they were analysed in order to find new fungal species. Around 3000 fungal isolates, including filamentous fungi and yeasts, were cultured, preserved and submitted for DNA sequencing. Through analysis of the ITS and LSU sequences from the obtained isolates, several plectosphaerellaceous fungi were identified for further study. Based on morphological characters and the combined analysis of the ITS and TEF1-α sequences, some isolates were found to represent new species in the genera Phialoparvum, i.e. Ph. maaspleinense and Ph. rietveltiae, and Plectosphaerella, i.e. Pl. hanneae and Pl. verschoorii, which are described and illustrated here.


2021 ◽  
Author(s):  
Heba-Alla S. AbdElatah ◽  
Nashwa M.A. Sallam ◽  
Mohamed S. Mohamed ◽  
Hadeel M. M. Khalil Bagy

Abstract Tomato plants displaying early blight symptoms were collected from different localities in the provinces of Assiut and Sohag, Egypt. The causal pathogens were isolated on potato dextrose agar plates. Pathogenicity tests with 48 isolates were carried out under greenhouse conditions on tomato cultivar (CV 844). All tested isolates caused symptoms of early blight disease with different degrees. The highest disease severity on tomato plants was found after inoculation with isolate No. 6 followed by isolates No. 20 and No. 31. The most pathogenic isolates were identified by sequence analysis using ITS1 and ITS4 primers. The analysis of the amplified sequences from fungal isolates No. 6, 20 and 31 displayed 99 - 100% nucleotide identity with Alternaria solani, Curvularia lunata and A. alternata, respectively. To our knowledge, this is the first report of Curvularia lunata as one of the causal pathogens of early blight disease of tomato plants in Egypt.


2021 ◽  
Author(s):  
Fuzia Elfituri Muftah Eltariki ◽  
Kartikeya Tiwari ◽  
Mohammed Abdelfatah Alhoot

Abstract A large number of undiscovered fungal species still exist on earth, which can be useful for the bioprospecting particularly the single cell oil (SCO) production. The present research study confirms four oleaginous fungal isolates from Libyan soil. These isolates (Barcoded as MSU-101, MSU-201, MSU-401 and MSU-501) were discovered and reported first time from diverse soil samples of district Aljabal Al-Akhdar in North-East Libya and fall in the class: Zygomycetes; order: Mortierellales. From the morphological and phylogenetic analysis, these isolates were identified and found as closest match with Mortierella alpina species. The present research study provides insight to the unseen fungal diversity and contributes to more comprehensive Mortierella alpina reference collections worldwide.


2021 ◽  
Author(s):  
Runlei Chang ◽  
Xiuyu Zhang ◽  
Hongli Si ◽  
Guoyan Zhao ◽  
Xiaowen Yuan ◽  
...  

Abstract Cryphalus piceae parasitizes various economically important conifers. Similar to other bark beetles, C. picea vectors an assortment of fungi and nematodes. Previously, several ophiostomatoid fungi were isolated from C. piceae in Poland and Japan. In the present study, we explored the diversity of ophiostomatoid fungi associated with C. piceae infesting pines in the Shandong Province of China. We isolated ophiostomatoid fungi from both galleries and beetles collected from our study sites. These fungal isolates were identified using both molecular and morphological data. Through this study, we recovered 176 isolates of ophiostomatoid fungi representing at least seven species. Ophiostoma ips was the most frequently isolated species. Analyses of molecular and morphological data indicated four of the ophiostomatoid fungal species recovered in this study were previously undescribed. Hereby, we described these species as Ceratocystiopsis yantaiensis sp. nov., C. weihaiensis sp. nov., Graphilbum translucens sp. nov. and Sporothrix villosa sp. nov. A majority of the ophiostomatoid fungi recovered in this study were novel species. This suggests that the forests in China harbour an assortment of undescribed ophiostomatoid fungi yet to be discovered.


Author(s):  
Pratibha Maravi ◽  
Anil Kumar

Background: Cellulose is the most abundant carbohydrate on earth and is considered as a good candidate for production of second generation biofuel (ethanol) and many other products of routine use. For degradation, cellulases are used which are mostly secreted by microbes such as fungi. Cellulases also play an important role in senescence of plants and in host-parasite relationship for invading the plant cell wall. However, comparatively lesser studies have been carried out on cellulase producing bacteria. Therefore, present study was aimed to isolate cellulase (Endo-β-1,4-D-glucanase; EC. 3.2.1.4.) from bacterial sources. Methodology: To isolate thermophilic/ mesophilic cellulase producing bacteria, soil samples were collected from wood furnishing area and agricultural farm around Indore. Besides, soil sample was also collected from the vicinity of Amlai Paper Mill in Budhar district, Madhya Pradesh. These soil samples after suitable dilutions were streaked on different nutrients agar petri-dishes having carboxymethyl cellulose (CMC) as an inducer. After screening, four colonies were isolated capable of producing good amount of cellulase. Screening was done using Congo red staining and confirmation was done after growth of the bacteria in liquid nutrient medium having CMC. These colonies individually were grown in suitable nutrient media having CMC as an inducer and enzyme activity was determined in the nutrient media after harvesting bacterial cells by centrifugation. Results: The highest enzyme producing bacteria were identified as Bacillus lichenoformis and Ochrobactrum anthropi after biochemical analyses, 16S rRNA sequencing and subsequently phylogenetic tree analysis.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Diah Irawati Dwi Arini ◽  
Margaretta Christita ◽  
Julianus Kinho

Tangale Nature reserve is a conservation area located in Gorontalo that have the biodiversity typical of Wallacea bioregion including macroscopic fungi. The purpose of this study was to identify the fungal species diversity found in the Tangale Nature reserve as well as its potential use, considering that the information on species diversity of fungi in the Wallacea region is very limited. This research was conducted using the cruise method by identifying macroscopic fungi along the hiking trail of Tangale Nature Reserve. The macroscopic fungi were observed for its morphological characteristic include the colour, diameter, surface of the veil, the shape of the stem, the length and diameter of the stem, the lamella, including ring and pore, type of lamella and the type of volva. The research recorded the substrates and the location where the fungus was found. Data were analyzed descriptively qualitative. The results of the research identified 28 species of macroscopic fungi that included to the division Ascomycota and Basidiomycota. It belongs to 16 families and 8 orders  are Pezizales, Agaricales, Auriculariales, Boletales, Cantharellales, Gomphales, Polyporales, dan Russulales. Based on place to grow as much as 57,14% were found growing on decaying wood and 42,86% found growing in the soil/litter. Based on the potential of use, it has identified four species of mushrooms potentially as edible mushroom are Pleurotus ostreatus,  Auricularia auricula, Ramaria formosa, and Polyporus arcularius. 11 species of mushrooms potentially as medicinal mushroom are Calvatia craniiformis, Scleroderma citrinum, Lenzites betulina, Microporus flabelliformis, Coriolus versicolor, Microporus xanthopus, and Albatrellus confluens.  


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1152-1152
Author(s):  
S. K. Kim ◽  
S. S. Hong ◽  
K. W. Kim ◽  
E. W. Park

A wilt disease occurred on greenhouse-grown eggplants (Solanum melongena L.) at Hanam and Yeojoo, Korea, in 1997. Lower leaves on the 2-month-old wilted eggplants exhibited gradual yellowing, interveinal necrosis, and marginal crinkling and dropped prematurely. Vascular tissues of diseased stems were discolored and turned black. Vertical sections of the stems revealed that the pith had been colonized by the fungus. The disease progressed from lower parts of the plants upward. Incidence of diseased eggplants in greenhouses was 5% on 23 May 1997. Although the incidence increased to 10% on 13 June, it remained constant through early July. Fungal isolates from discolored vascular tissues were initially whitish to cream color on potato-dextrose agar, which turned black due to the formation of microsclerotia. The fungus also produced abundant verticillate conidiophores with phialides and conidia. Based on these cultural and morphological characteristics, the fungus was identified as Verticillium dahliae Klebahn. Pathogenicity tests by root cutting, root dipping, or soil drenching resulted in similar symptoms observed in the naturally infected eggplants. Symptoms were first observed on lower leaves of each eggplant 3 weeks after inoculation. Isolation from symptomatic leaves of the inoculated eggplants yielded V. dahliae. This is the first report of occurrence of Verticillium wilt of eggplant in Korea.


2021 ◽  
Author(s):  
Dalel Daâssi ◽  
Fatimah Qabil Almaghribi

Abstract The aim of this work was to isolate indigenous PAH degrading-fungi from petroleum contaminated soil and exogenous ligninolytic strains from decaying-wood, with the ability to secrete diverse enzyme activity. A total of ten ligninolytic fungal isolates and two native strains, has been successfully isolated, screened and identified. The phylogenetic analysis revealed that the indigenous fungi (KBR1 and KB8) belong to the genus Aspergillus niger and tubingensis. While the ligninolytic exogenous PAH-degrading strains namely KBR1-1, KB4, KB2 and LB3 were affiliated to different genera like Syncephalastrum sp, Paecilomyces formosus, Fusarium chlamydosporum, and Coniochaeta sp., respectively. Basis on the taxonomic analysis, enzymatic activities and the hydrocarbons removal rates, single fungal culture employing the strain LB3, KB4, KBR1 and the mixed culture (LB3+KB4) were selected to be used in soil microcosms treatments. The Total petroleum hydrocarbons (TPH), fungal growth rates, BOD5/COD ratios and GC-MS analysis, were determined in all soil microcosmos treatments (SMT) and compared with those of the control (SMU). After 60 days of culture incubation, the highest rate of TPH degradation was recorded in SMT[KB4] by approximately 92±2.35% followed by SMT[KBR1] then SMT[LB3+KB4] with 86.66±1.83% and 85.14±2.21%, respectively.


2020 ◽  
Vol 10 (11) ◽  
pp. 3797
Author(s):  
Yin Jia ◽  
Liuyu Yin ◽  
Fengyu Zhang ◽  
Mei Wang ◽  
Mingliang Sun ◽  
...  

To avoid the lacquerware of the Nanhai No. 1 shipwreck from being corroded by microorganisms and to improve the knowledge on microbial ecology of the wood lacquers, we conducted a series of tests on the two water samples storing the lacquerware and colonies on the surface of the lacquerware. The high-throughput sequencing detected dominant fungal communities. After that, the fungal strains were isolated and then identified by amplification of ITS- 18S rRNA. Then the activity of ligninolytic and cellulolytic enzymes was detected on potato dextrose agar (PDA) plates with 0.04% (v/v) guaiacol and carboxymethyl cellulose (CMC) agar plates. Finally, we tested the biocide susceptibility of these fungi. Penicillium chrysogenum (NK-NH3) and Fusarium solani (NK- NH1) were the dominant fungi in the sample collected in April 2016 and June 2017. What is more, both showed activity of ligninolytic and cellulolytic enzymes. Four biocidal products (Preventol® D7, P91, BIT 20N, and Euxyl® K100) inhibited the growth of the fungal species in vitro effectively. In further research, the microbial community and environmental parameters in the museum should be monitored to assess the changes in the community and to detect potential microbial outbreaks.


Sign in / Sign up

Export Citation Format

Share Document