scholarly journals Strength Performance of Concrete containing Date Seeds as Partial Replacement of Coarse Aggregates under the Exposure of NaCl and Na2SO4

2020 ◽  
Vol 1 (3) ◽  
pp. 206-212
Author(s):  
Adnan Ahmed ◽  
Sajjad Ali Mangi ◽  
Arslan Wali Muhammad ◽  
Naseer Ul Din

The strength performance of the concrete structures is of great importance in the field of Civil Engineering. Concrete is the most prevalent and an artificially made construction material all over the world. Concrete is used for the construction of bridges, dams, abutments, and many other hydraulic structures. These structures remain in seawater throughout their service life. As seawater contains a lot of salts, composed of chlorides and sulphates and many other reactive elements. These chloride and sulphates attack on the concrete and cause deterioration of structure. Therefore, the aim of this study was to investigate the strength performance of concrete containing Date Seeds (DS) exposed to Sodium Chloride (NaCl) and Sodium Sulphate Na2SO4. In this study we have replaced the Coarse Aggregates with Date Seeds (DS) by different percentages of weight i.e. (CA:DS)%, (100:0)%, (98:2)%, (97:3)% and (96:4)%. The constant water cement ratio was used in all mixes i.e. 0.5. Workability, Density, and compressive strength were examined by casting 48 standard cubes of 100mm size, and exposure to the NaCl and Na2SO4 Solution for curing at 7 and 28 days. Test results demonstrated that workability first increase at 2% replacement but then decreases as replacement increases. The results of Density and Compressive Strength of Cubes cured in plain water and in mixed solution of NaCl and Na2SO4 were compared. It was observed that the replacement of coarse aggregate with date seeds was increases workability of concrete. Density and compressive strength of cubes cured in plain water decreases to a small extent. For Compressive Strength, it was observed at 28 days, that the Compressive Strength of cubes placed in normal water for curing have greater values as compare to the cubes placed in the salt solution.

The primary intent of this paper is to study replacement of coarse aggregate with RCA of M40 grade concrete in different proportions such as 0%,10%, 20%, 30% and 40% and also to collate the results of geo-polymer concrete made with recycled coarse aggregates(GPCRCA) with geo-polymer concrete of natural coarse aggregate(GPCNA) and controlled concrete of respective grade. Geo-polymer concrete (GPC) is observed to be more resistant towards sulphate attack, with both in (CA) and (RCA) to a replacement of 30%, when it is compared with the similar grade of controlled concrete(CC). The durability of the concrete cubes are analyzed by immersing in 5% concentration solutions for a time period of 15, 45,75 and 105 days, The change of weight and compressive strength towards resistance is evaluated . Results stipulated that Geo-polymer concrete is highly resistant to Sodium sulphate and Magnesium sulphate.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Santhosh M. Malkapur ◽  
Ashish Anand ◽  
Amit Prakash Pandey ◽  
Alok Ojha ◽  
Nimesh Mani ◽  
...  

Disposal of solid wastes has been a major problem all over the world. Out of all the different types of solid wastes, the major challenge of disposal is posed by the ever increasing volumes of plastic wastes. While several methods are in practice, producing newer useful materials by recycling of such plastic wastes is, by far, the best method of their disposal. One such possible method is to use the waste plastics as an ingredient in the production of the concrete mixes in the construction industry. The present study aims to investigate the relative contributions of the various mix parameters to the mechanical properties of concrete mixes produced with waste plastics as partial replacement (10–30% by volume) to coarse aggregates. Initially, strength test results of a set of trial mixes, selected based on Taguchi’s design of experiments (DOE) method are obtained. A detailed analysis of the experimental results is carried out to study the effect of using waste plastics as a partial replacement to coarse aggregates on the strength parameters of these concrete mixes. It is found that all these trial mixes have performed satisfactorily in terms of workability in the fresh state and strength properties in their hardened state.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2020 ◽  
Vol 2 (1) ◽  
pp. 31-57
Author(s):  
Ni Ketut Sri Astati Sukawati

Concrete with various variants is a basic requirement in building a building. The concrete mixture is diverse depending on the planning made beforehand. The cement mixture is usually in the form of a mixture of artificial stone, cement, water and fine aggregates and coarse aggregates. Aggregates (fine aggregates and coarse aggregates) function as fillers in concrete mixtures. (Subakti, A., 1994). However, in building construction, additives are often added, but there is still a sense of uncertainty at the time of dismantling the mold and the reference before the concrete reaches sufficient strength to carry its own weight and the carrying loads acting on it. To overcome the time of carrying out work related to concrete, it is necessary to find an alternative solution, for example by looking for alternative ingredients of concrete mixture on the basis of consideration without reducing the quality of the concrete. From the results of previous studies it was stated that due to the partial replacement of cement with Fly Ash, the strength of the pressure and tensile strength of the concrete had increased (Budhi Saputro, A., 2008). Based on the description above, the author seeks to examine how the compressive strength of concrete characteristics that occur by adding additives Addition H.E in the concrete mixture and is there any additive Additon H.E effect on the increase in the compressive strength characteristic of the concrete. From the results of the study, it was found that the compressive strength of the concrete with the addition of additives HE was that after the compressive strength test of the concrete cube was carried out and the analysis of concrete compressive strength of 10 specimens, in each experiment a cube specimen was made with the addition of additons. HE with a dose of 80 cc, 120 cc, and 200 cc can accelerate and increase the compressive strength of concrete characteristics.


2020 ◽  
Vol 10 (3) ◽  
pp. 5728-5731 ◽  
Author(s):  
S. A. Chandio ◽  
B. A. Memon ◽  
M. Oad ◽  
F. A. Chandio ◽  
M. U. Memon

This research paper aims at investigating the effects of fly ash as cement replacement in green concrete made with partial replacement of conventional coarse aggregates with coarse aggregates from demolishing waste. Green concrete developed with waste materials is an active area of research as it helps in reducing the waste management issues and protecting the environment. Six concrete mixes were prepared using 1:2:4 ratio and demolishing waste was used in equal proportion with conventional aggregates, whereas fly ash was used from 0%-10% with an increment of 2.5%. The water-cement ratio used was equal to 0.5. Out of these mixes, one mix was prepared with all conventional aggregates and was used as the control, and one mix with 0% fly ash had only conventional and recycled aggregates. The slump test of all mixes was determined. A total of 18 cylinders of standard size were prepared and cured for 28 days. After curing the compressive strength of the specimens was evaluated under gradually increasing load until failure. It is observed that 5% replacement of cement with fly ash and 50% recycled aggregates gives better results. With this level of dosage of two waste materials, the reduction in compressive strength is about 11%.


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


Author(s):  
Sravya Nalla ◽  
Janardhana Maganti ◽  
Dinakar Pasla

Self-compacting concrete (SCC) is a revolutionary development in concrete construction. The addition of mineral admixtures like metakaolin, which is a highly reactive pozzolana to the SCC mixes, gives it superior strength and durability. The present work is an effort to study the behavior of M50 grade SCC by partial replacement of Portland Slag Cement (PSC) with metakaolin. Its strength and durability aspects are comparable with a controlled concrete (without replacement of cement). In the present work, a new mix design methodology based on the efficiency of metakaolin is adopted. The optimum percentage replacement of cement with metakaolin is obtained based on compressive strength test results. The influence of metakaolin on the workability, compressive strength, splitting tensile strength and flexural strength of SCC and its behavior when subjected to elevated temperature was investigated through evaluation against controlled concrete and non-destructive testing. From the test results, it was observed that incorporation of metakaolin at an optimum dosage satisfied all the fresh properties of SCC and improved both the strength and durability performance of SCC compared to controlled concrete.


Construction and Demolition wastes(C&D wastes) are generated in all cities of the world due to rapid urbanization. Disposing C & D waste these days is a costly affair, and raises environmental issues. Hence an attempt is made to reuse the demolished concrete as a partial replacement of natural coarse aggregates. Also due to ban of sand mining by local authorities, the cost of natural fine aggregate is very high and itself becoming a scarce material. Hence crushed stone aggregates called manufactured sand (m sand) is used, totally replacing natural fine aggregates. This concept is found to be cost effective, minimizes disposal of C & D wastes, and leads towards Green Building Concepts. Compression test on M40 concrete cubes of size 150mmx150mmx150mm are conducted at end of 7 days and 28days. Mix design for M40 concrete is made in accordance to IS: 10262-2019 with water cement ratio of 0.45 using 53 Grade Ordinary Portland cement. Superplasticizer (LIQUIFIX) is used to enhance workability. Nano Silica (NS)(1.5% by weight of cement),Wollastonite powder(WP)(10%by weight of cement) and Basalt fibres(BF)(1% by weight of cement) are added as additives. It is observed, that compressive strength of 7 days and 28 days cured samples is 25% more with the addition of all three additives compared to samples without additives. Hence the loss of compressive strength obtained by using demolished concrete as aggregates and m sand in concrete is regained with the addition of additives.


Sign in / Sign up

Export Citation Format

Share Document