scholarly journals Optimization of experimental parameters for retention of Pb(II) ions from aqueous solution on clay adsorbent

Author(s):  
Bianca Azanfire ◽  
Dumitru Bulgariu ◽  
Lăcrămioara Nemeş ◽  
Laura Bulgariu

The removal of Pb(II) ions is an important issue for the treatment of industrial wastewater, due to its serious consequences on environment and human health. In this study a local clay material was tested as adsorbent for the retention of Pb(II) ions from aqueous solution. The proposed method can be considered low-cost, mainly due to the high availability of clay material in this region, and the high removal percent of Pb(II) ions (> 99%) allows us to say that this method has a high efficiency. Therefore, the finding of the optimal values of the most important experimental parameters which affects the efficiency of Pb(II) ions adsorption on clay adsorbent, represent the next important step in highlighting the practical applicability of this process. The most important experimental parameters, including initial solution pH,adsorbent dose, initial Pb(II) ions concentration, contact time and temperature, were analyzed in batch systems. The obtained experimental results indicates that the efficiency of adsorptionprocess is highest at initial solution pH of 7.0, 4.0 g adsorbent/L, 5 min of contact time and high temperature (50 C). Under these conditions, the removal percent of Pb(II) ions is over 99 % over the initial concentration range between 20 and 310 mg Pb(II)/L. The results of this study suggest that this clay material is an excellent adsorbent for Pb(II) ions removal and broadens the potential applicability of these materials in environmental remediation.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Öznur Dülger ◽  
Fatma Turak ◽  
Kadir Turhan ◽  
Mahmure Özgür

Sumac Leaves (SL) (Rhus Coriaria L. ) were investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue (MB) from aqueous solution. The effects of initial dye concentration, initial solution pH, phases contact time, and adsorbent dose on the adsorption of MB on SL were investigated. The amount of dye adsorbed was found to vary with initial solution pH, Sumac Leaves dose, MB concentration, and phases contact time. The Langmuir and Freundlich adsorption models were evaluated using the experimental data and the experimental results showed that the Langmuir model fits better than the Freundlich model. The maximum adsorption capacity was found to be 151.69 mg/g from the Langmuir isotherm model at 25°C. The value of the monolayer saturation capacity of SL was comparable to the adsorption capacities of some other adsorbent materials for MB. The adsorption rate data were analyzed according to the pseudo-first order kinetic and pseudo-second order kinetic models and intraparticle diffusion model. It was found that kinetic followed a pseudo-second order model.


2013 ◽  
Vol 795 ◽  
pp. 674-678 ◽  
Author(s):  
Noorzahan Begum ◽  
Aimi Noorliyana ◽  
Md Fazlul Bari ◽  
Norzilah Abdul Halif ◽  
Nur Hidayah ◽  
...  

The ability of pomelo peel (PP) as natural adsorbent to remove Cu (II) ions from aqueous solution was investigated. The influence of solution pH, contact time and temperature were evaluated. Cu (II) removal increased as the pH of the solution increased and the maximum value reached at pH 6. The adsorption was relatively fast (30 min). Adsorption kinetics followed the pseudosecondorder model. At low temperature the adsorption was not affected but at high temperature it was reduced. PP is considered as low cost material that shows potential to be applied in wastewater technology for remediation of heavy metal contamination.


2021 ◽  
Author(s):  
Yong Cheng ◽  
Longjun Xu ◽  
Chenglun Liu ◽  
Zao Jiang ◽  
Qiyuan Zhang ◽  
...  

Abstract In this work, red mud was used as raw material to extract Al and Fe with hydrochloric acid. The high-efficiency polyaluminum iron chloride (PAFC) flocculant was prepared via adjusting the pH of the leaching solution, the molar ratio of aluminum and iron, and the polymerization temperature. The effect of synthesis and flocculation conditions on the flocculation performance of aged landfill leachate was investigated. The results confirmed that the PAFC prepared at the polymerization pH of 2.5, the Al/Fe molar ratio of 8, and the polymerization temperature of 70 °C had the optimum flocculation effect. The flocculation consequences of PAFC and commercial polyaluminum iron chloride flocculant (CPAFC) under different flocculation conditions were compared. The chemical oxygen demand (COD), UV254, chroma and settlement height of PAFC at flocculant concentration of 60 g/L and solution pH of 6 were 72.2%, 79.2%, 82.9% and 9.5 cm (within 90 min), respectively. PAFC has excellent flocculation performance and can be used as a simple, potentially low-cost wastewater treatment agent in industrial applications.


2021 ◽  
Vol 12 (2) ◽  
pp. 2022-2040

Almond shell (AS) is a low-cost adsorbent used in this study for the removal of methylene blue (MB), crystal violet (CV), and Congo red (CR) from an aqueous solution in single and mixture binary systems. The low-cost adsorbent was characterized by FTIR and SEM analysis. The effects of AS dose, contact time, initial dye concentration, pH, and temperature on MB, CV, and CR adsorption were studied in a single system. In a binary system, the MB, CV, and CR were removed from the mixture of MB+CR, CV+MB, and CV+CR with a percentage in volume ranging from 0 to 100 % in MB and CV, and CR. Kinetic studies showed rapid sorption following a second-order kinetic model with of contact time of 10 min. The modulation of adsorption isotherms showed that retention follows the Langmuir model. The thermodynamic parameters proved that the MB, CV, and CR adsorption process was feasible, spontaneous, and exothermic. The synergy adsorption between dyes in a binary mixture of MB+CR and CV+CR, while the competition adsorption between dyes in a binary mixture of MB+ CV.


2011 ◽  
Vol 8 (2) ◽  
pp. 803-808 ◽  
Author(s):  
U. V. Ladhe ◽  
S. K. Wankhede ◽  
V. T. Patil ◽  
P. R. Patil

Adsorptions of Erichrome Black T dye in aqueous solution on cotton stem activated carbon have been studied as a function of contact time, concentration and pH. Effect of various experimental parameters has been investigated at 39±1°C under batch adsorption technique. The result shows that cotton stem activated carbon adsorbs dye to a sufficient extent. The physicochemical characterization and chemical kinetics was also examined for the same dye. The overall result shows that it can be fruitfully used for the removal of dye from wastewaters.


2009 ◽  
Vol 6 (3) ◽  
pp. 737-742 ◽  
Author(s):  
T. Santhi ◽  
S. Manonmani ◽  
S. Ravi

A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A granule prepared from a mixture of leafs, fruits and twigs ofMuntingia calaburahad been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), methylene red (MR) and malachite green (MG). The effects of various experimental parameters (e.g.,contact time, dye concentration, adsorbent dose and pH) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 6, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir and Freundlich isotherm models for all three dyes sorption. The biosorption processes followed the pseudo-first order rate kinetics. The results in this study indicated thatMuntingia calaburawas an attractive candidate for removing cationic dyes from the dye wastewater.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2013 ◽  
Vol 821-822 ◽  
pp. 497-501
Author(s):  
Hua Ling He ◽  
Zhi Cai Yu ◽  
Peng Liang

The adsorption behavior of acid red G from aqueous solution onto raw bentonite (RB) and raw bentonite/ cationic starch (RB/CS) composite samples was investigated as a function of parameters such as contact time, salt concentration, initial dye concentration and temperature. The results showed that an amount of 0.12g of RB/CS composite could removal more than 90% of dye from 150ml of 100 mg L-1 acid red G solution with a contact time of 60 min, at room temperature and no salt addition. The adsorption rate was fast and more than half of the adsorbed acid red G was removed in the first 10 min for RB and 5 min for RB/CS at room temperature.(Co=100 mg L-1)The results also indicated that the RB/CS composite had a shorter equilibrium time, higher color removal and stronger adsorption properties of acid red G than RB. In summary, the results suggests that RB/CS can be employed as a kind of low-cost material for the removal of acid red G from aqueous solution.


2016 ◽  
Vol 835 ◽  
pp. 378-385 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Mohamed Kutty ◽  
Mohamed Hasnain Isa ◽  
Usman Aminu Umar ◽  
Emmanuel Olisa

Industrial wastewater containing toxic pollutants such as heavy metals tends to contaminate the environment once it is release without proper treatment. Heavy metals are toxic to both human and other living organisms. It is necessary to treat industrial wastewater polluted with heavy metals prior to its discharge into the receiving environment. In this study, low cost adsorbent was generated from sugarcane bagasse through incineration. The prepared adsorbent “microwave incinerated sugarcane bagasse ash” (MISCBA) was used in removing copper and zinc from aqueous solution. Parameters of importance such as pH, contact time and adsorbent dosages are studied to investigate their effects on the adsorption of copper and zinc. Maximum adsorption was observed at pH 6.0, contact time of 180 minutes and adsorbent dosage of 10 g/L. Zinc removal follows Langmuir isotherm model with correlation coefficient of 0.9291. Copper adsorption follows both Langmuir and Freundlich isotherm model with correlation coefficient of 0.9181 and 0.9742, respectively. Removal capacities of 38.4 mg/g and 20.4 mg/g were obtained for copper and zinc, respectively. Application of MISCBA as low - cost adsorbent have shown significant outcome in removal of copper and zinc from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document