scholarly journals Optical Properties of Cu2O Thin Films Impregnated with Carbon Nanotube (CNT)

2022 ◽  
Vol 30 (1) ◽  
pp. 343-350
Author(s):  
Oluyamo Sunday Samuel ◽  
Ajanaku Olanrewaju ◽  
Adedayo Kayode David

This study investigates CNT-doped Cu2O thin film deposited by spray pyrolysis technique at a substrate temperature of 100°C. The samples were annealed at temperatures of 200°C and 230°C for 30 minutes. The effect of CNT doping on certain optical properties, such as extinction and absorption coefficients, a refractive index of doped Cu2O thin films were examined. The absorbance of the doped samples increases within the visible range and decreases in the ultraviolet range of the electromagnetic spectrum (EM). Both absorbance and extinction coefficients increased with temperature making the samples a good candidate for use as absorbance layer in device fabrication. In addition, there was an increase in direct bandgap with the increase in CNT concentration of the thin films. The result of the study revealed that CNT doping has a significant effect on the properties of Cu2O.

2021 ◽  
pp. 1513-1523
Author(s):  
Shaymaa Khashea Abdo ◽  
Jamal M. Rzaij

 The quaternary alloy of Cu2CdSnS4 (CCSS) is one type of thin film materials that contributes to the field of photovoltaic devices manufacturing, the importance of which has not been commonly enlightened as most of the other materials. For the preparation of CCSS thin films at 350 °C on glass substrates, the chemical spray pyrolysis technique was used. The optical properties of thin films prepared under the influence of the variation of copper solution molarity (0.03, 0.05, 0.07, and 0.09 M) on the quaternary compound were examined using a UV-vis spectrophotometer. The findings of the AFM study showed the atoms on the surface that are acclimatized in the form of nanorods with an increase in the average grain size from 62.72 to 79.17 nm. The results also showed an improvement in the average surface roughness from 5.69 to 12.8 nm when copper concentration increased from 0.03 to 0.09 M. The UV-vis results showed that the optical transmittance of CCSS decreases by increasing the solution molarity of copper, with a change in the absorption edge toward the low energy side (redshift). With an increase in the wavelength between 725 and 960 nm, a low absorption coefficient was found in the infrared region, while a strong absorption coefficient in the visible range was observed with the increase in copper solution molarity. The energy gap values decreased from 1.6 to 1.47 eV when copper solution molarity increased from 0.03 to 0.09 M. By raising copper solution molarity to 0.09 M, the refractive index at the absorption edge was increased from 1.6 to 1.97, while the extinction coefficient reduced.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 724
Author(s):  
Tong Li ◽  
Masaya Ichimura

Magnesium hydroxide (Mg(OH)2) thin films were deposited by the drop-dry deposition (DDD) method using an aqueous solution containing Mg(NO3)2 and NaOH. DDD was performed by dropping the solution on a substrate, heating-drying, and rinsing in water. Effects of different deposition conditions on the surface morphology and optical properties of Mg(OH)2 thin films were researched. Films with a thickness of 1−2 μm were successfully deposited, and the Raman peaks of Mg(OH)2 were observed for them. Their transmittance in the visible range was 95% or more, and the bandgap was about 5.8 eV. It was found that the thin films have resistivity of the order of 105 Ωcm. Thus, the transparent and semiconducting Mg(OH)2 thin films were successfully prepared by DDD.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


Author(s):  
Sofea Nabila Hazmin ◽  
F. S. S. Zahid ◽  
N. S. M. Sauki ◽  
M. H. Mamat ◽  
M. N. Amalina

<span>This paper presents the physical and optical properties of AZO thin films on Teflon substrate at low deposition temperature by spray pyrolysis. In this study, the effect of different process parameters such as spray time and substrate to nozzle distance on the physical and optical characteristic of aluminium doped zinc oxide (AZO) deposited on Teflon substrates was investigated. The AZO thin films were successfully deposited onto Teflon substrate by spray pyrolysis technique at low deposition temperature. The physical analysis by X-ray diffraction (XRD) shows that the deposited Teflon substrate films have a preferred orientation along the direction (100) and (101). Optical measurements were conducted using Jasco/V-670 Ex Uv-Vis-NIR Spectrophotometer model to confirms that in visible ray it is possible to get good reflectance of AZO films with a reflection of 80%. The values of band gaps Eg were calculated from the spectra of UV-Visible reflectance that were vary between 3.06 and 3.14 eV. </span>


2010 ◽  
Vol 7 (1) ◽  
pp. 69-75
Author(s):  
Baghdad Science Journal

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters such as Texture Coefficient (Tc), dislocation density (?) and number of crystals (M) were also calculated .


2011 ◽  
Vol 8 (2) ◽  
pp. 561-565
Author(s):  
Baghdad Science Journal

Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.


2018 ◽  
Vol 17 (03) ◽  
pp. 1760037 ◽  
Author(s):  
A. Nancy Anna Anasthasiya ◽  
K. Gowtham ◽  
R. Shruthi ◽  
R. Pandeeswari ◽  
B. G. Jeyaprakash

The spray pyrolysis technique was employed to deposit V2O5 thin films on a glass substrate. By varying the precursor solution volume from 10[Formula: see text]mL to 50[Formula: see text]mL in steps of 10[Formula: see text]mL, films of various thicknesses were prepared. Orthorhombic polycrystalline V2O5 films were inferred from the XRD pattern irrespective of precursor solution volume. The micro-Raman studies suggested that annealed V2O5 thin film has good crystallinity. The effect of precursor solution volume on morphological and optical properties were analysed and reported.


Sign in / Sign up

Export Citation Format

Share Document