scholarly journals An Attempt to Develop a New Fire-Resistant Hydraulic Fluid Based on Water-in-Oil Microemulsions

Author(s):  
N. Garti ◽  
A. Aserin ◽  
S. Ezrahi

The strategy for the development of microemulsion-based fire-resistant hydraulic fluids has been expounded. Phase diagrams were constructed for mixtures of water, oil, and nonionic surfactants with and without cosurfactants. From these phase diagrams, the boundaries of the monophasic area were outlined. After the major components had thus been determined, several preliminary formulations were developed by incorporating suitable additives into the oleic ingredient of the hydraulic fluid. These carefully chosen additives considerably improve the performance of the hydraulic fluid. The resulting microemulsion-based compositions complied with most of the requirements set for fire-resistant hydraulic fluids. Model systems pertinent to such formulations were utilized in order to investigate structural factors, which induce enhanced water solubilization. The role played by alcohols in this context was elucidated in terms of an empirical equation. Sophisticated scattering and NMR methods have demonstrated the variations in the microstructure of a high water content model system. Sub-zero differential scanning calorimetry (DSC) techniques have revealed the existence of two types of water (free and bound) and determined their relative concentrations.

Food Industry ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 29-36
Author(s):  
Alexander Vereshchagin ◽  
Irina Reznichenko ◽  
Nikolay Bychin

The article concerns the research specificity of model systems such as cocoa butter – palm olein, cocoa butter – sucrose and cocoa butter – glucose syrup by the differential scanning calorimetry (DSC) method. The researchers run experiments in the temperature range from –100 to –50°C at a heating rate of 10 °C/min. In the cacao butter – palm olein system an eutectic occurs with a palm olein content of 30.0 % indicating the limited solubility of palm olein in cocoa butter. In the cocoa butter – sucrose system, cocoa butter crystallizes as in the α-form (10,0– 30,0; 60.0–90.0 % MK), and as a mixture of α-and β-forms of MK (40.0; 50,0; 70,0 and 80.0 %). Sucrose stabilizes low-temperature polymorphic modifications of cocoa butter. In the cocoa butter – glucose syrup system, temperature of samples melting is 21-22 °C. This composition is promising for use as a filling of confectionery products and glazes production. In this regard, a man can use glucose syrup only in the candy cases production. The role of surfactants used for the formation and stabilization of cocoa butter polymorphs and increasing the thermal stability of the shock-lad without the introduction of palm stearin requires separate consideration.


Author(s):  
A. Bykov ◽  
D. Palatov ◽  
I. Studenov ◽  
D. Chupov

The article provides information about the features of spring feeding of sterlet in the spawning grounds of the middle course of the Northern Dvina river in may 2019. The main and secondary groups of forage objects in the diet of this species of sturgeon are characterized. The article considers the variability of the sterlet food composition with an increase in the size of fish from 30 to 60 cm. In the process of fish growth in the diet of the Severodvinsk sterlet, the main components in terms of occurrence and mass in all size groups are the larvae of Brooks and chironomids. A minor occurrence was the larvae of midges, biting midges, stoneflies, mayflies and small clams. To random and seasonal food are the larvae of water bugs, butterflies, flies, beetles and eggs of other fish. The feeding intensity of the smaller sterlet (30–40 cm) was significantly higher than that of the fish in the size groups 40–50 and 50–60 cm. Fundamental changes in the diet of the Severodvinsk sterlet for the main food objects for more than sixty years of observations have not been established. During periods of high water content of the Northern Dvina due to seasonal changes in the structure of benthic communities, the value of Brooks in the diet of sterlet increases and the proportion of chironomids decreases.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2019 ◽  
Vol 67 (7) ◽  
pp. 4803-4810 ◽  
Author(s):  
Xiong Wang ◽  
Tao Qin ◽  
Yexian Qin ◽  
Ahmed H. Abdelrahman ◽  
Russell S. Witte ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shun-ichiro Karato ◽  
Bijaya Karki ◽  
Jeffrey Park

AbstractOceans on Earth are present as a result of dynamic equilibrium between degassing and regassing through the interaction with Earth’s interior. We review mineral physics, geophysical, and geochemical studies related to the global water circulation and conclude that the water content has a peak in the mantle transition zone (MTZ) with a value of 0.1–1 wt% (with large regional variations). When water-rich MTZ materials are transported out of the MTZ, partial melting occurs. Vertical direction of melt migration is determined by the density contrast between the melts and coexisting minerals. Because a density change associated with a phase transformation occurs sharply for a solid but more gradually for a melt, melts formed above the phase transformation depth are generally heavier than solids, whereas melts formed below the transformation depth are lighter than solids. Consequently, hydrous melts formed either above or below the MTZ return to the MTZ, maintaining its high water content. However, the MTZ water content cannot increase without limit. The melt-solid density contrast above the 410 km depends on the temperature. In cooler regions, melting will occur only in the presence of very water-rich materials. Melts produced in these regions have high water content and hence can be buoyant above the 410 km, removing water from the MTZ. Consequently, cooler regions of melting act as a water valve to maintain the water content of the MTZ near its threshold level (~ 0.1–1.0 wt%). Mass-balance considerations explain the observed near-constant sea-level despite large fluctuations over Earth history. Observations suggesting deep-mantle melting are reviewed including the presence of low-velocity anomalies just above and below the MTZ and geochemical evidence for hydrous melts formed in the MTZ. However, the interpretation of long-term sea-level change and the role of deep mantle melting in the global water circulation are non-unique and alternative models are reviewed. Possible future directions of studies on the global water circulation are proposed including geodynamic modeling, mineral physics and observational studies, and studies integrating results from different disciplines.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2517
Author(s):  
Anatoliy Olkhov ◽  
Olga Alexeeva ◽  
Marina Konstantinova ◽  
Vyacheslav Podmasterev ◽  
Polina Tyubaeva ◽  
...  

Biocompatible glycero (9,10-trioxolane) trioleate (ozonide of oleic acid triglyceride, OTOA) was incorporated into polylactic acid (PLA) fibers by electrospinning and nonwoven PLA mats with 1%, 3% and 5% OTOA content. The morphological, mechanical, thermal and water sorption properties of electrospun PLA mats after the addition of OTOA were studied. A morphological analysis showed that the addition of OTOA increased the average fiber diameter and induced the formation of pores on the fiber surface, leading to an increase in the specific surface area for OTOA-modified PLA fibrous mats. PLA fiber mats with 3% OTOA content were characterized by a highly porous surface morphology, an increased specific surface area and high-water sorption. Differential scanning calorimetry (DSC) was used to analyze the thermal properties of the fibrous PLA mats. The glass transition temperatures of the fibers from the PLA–OTOA composites decreased as the OTOA content increased, which was attributed to the plasticizing effect of OTOA. DSC results showed that OTOA aided the PLA amorphization process, thus reducing the crystallinity of the obtained nonwoven PLA–OTOA materials. An analysis of the mechanical properties showed that the tensile strength of electrospun PLA mats was improved by the addition of OTOA. Additionally, fibrous PLA mats with 3% OTOA content showed increased elasticity compared to the pristine PLA material. The obtained porous PLA electrospun fibers with the optimal 3% OTOA content have the potential for various biomedical applications such as drug delivery and in tissue engineering.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
María González Martínez ◽  
Estéban Hélias ◽  
Gilles Ratel ◽  
Sébastien Thiéry ◽  
Thierry Melkior

Biomass preheating in torrefaction at an industrial scale is possible through a direct contact with the hot gases released. However, their high water-content implies introducing moisture (around 20% v/v) in the torrefaction atmosphere, which may impact biomass thermochemical transformation. In this work, this situation was investigated for wheat straw, beech wood and pine forest residue in torrefaction in two complementary experimental devices. Firstly, experiments in chemical regime carried out in a thermogravimetric analyzer (TGA) showed that biomass degradation started from lower temperatures and was faster under a moist atmosphere (20% v/v water content) for all biomass samples. This suggests that moisture might promote biomass components’ degradation reactions from lower temperatures than those observed under a dry atmosphere. Furthermore, biomass inorganic composition might play a role in the extent of biomass degradation in torrefaction in the presence of moisture. Secondly, torrefaction experiments on a lab-scale device made possible to assess the influence of temperature and residence time under dry and 100% moist atmosphere. In this case, the difference in solid mass loss between dry and moist torrefaction was only significant for wheat straw. Globally, an effect of water vapor on biomass transformation through torrefaction was observed (maximum 10%db), which appeared to be dependent on the biomass type and composition.


Sign in / Sign up

Export Citation Format

Share Document