scholarly journals Chemical composition, fermentation profile, microbial population and dry matter recovery of silages from mixtures of palisade grass and forage peanut

2021 ◽  
Vol 9 (1) ◽  
pp. 34-42
Author(s):  
Françoise Mara Gomes ◽  
Karina Guimarães Ribeiro ◽  
Igor Alexandre De Souza ◽  
Janaina De Lima Silva ◽  
Mariele Cristina Nascimento Agarussi ◽  
...  

The study evaluated chemical composition, fermentation profile, microbial population and dry matter recovery of silages made from mixtures of palisade grass (Urochloa brizantha cv. Marandu) and forage peanut (Arachis pintoi cv. Belmonte). The experiment was conducted and analyzed in a complete randomized factorial design using 5 levels of each forage (0, 25, 50, 75 and 100% on a fresh matter basis), with and without microbial inoculant and 3 replications. The crude protein concentration increased linearly (P<0.05) and fiber concentration decreased linearly (P<0.05) as forage peanut level in silage increased. There was a positive quadratic effect (without inoculant) and positive linear effect (with inoculant) on lactic acid concentration (P<0.05) and a positive quadratic effect (P<0.05) on lactic acid bacteria population with increasing forage peanut levels in silage. The main effects of the addition of forage peanut to palisade grass at ensiling were improvement in the chemical composition and fermentation profile of the grass silage. We recommend adding 25–75% forage peanut to palisade grass prior to ensiling to improve the quality of the resulting silage but there is little merit in adding microbial inoculant to the forage at ensiling. Feeding studies with animals would verify potential benefits in production from inclusion of legume with grass at ensiling, while studies with addition of energy sources at ensiling would determine any further benefits to be achieved in silage quality.

2021 ◽  
Vol 51 (3) ◽  
pp. 191-198
Author(s):  
Juliana Schuch PITIRINI ◽  
Rosana Ingrid Ribeiro dos SANTOS ◽  
Francy Manoely da Silva LIMA ◽  
Ilano Silva Braga do NASCIMENTO ◽  
Jehmison de Oliveira BARRADAS ◽  
...  

ABSTRACT The use of cassava root silage for animal feeding is a suitable option for farmers who grow cassava as an alternative product and for cattle ranchers who have to deal with high prices of corn. Our objective was to determine the effects of cassava genotypes and the correction of soil acidity on the microbial population, fermentation characteristics, chemical composition, aerobic stability and losses of cassava root silage. We used a 2 × 3 factorial design in completely randomized blocks, with four replications. We evaluated two cassava genotypes (Caeté and Manteiguinha) and three methods of soil acidity correction (lime, gypsum, and lime+gypsum). The roots were harvested 11 months after planting, ensiled in PVC silos, and stored for 45 days. No interaction was observed between genotypes and soil acidity correction for any of the evaluated parameters. The silage of Caeté genotype showed the highest concentration of dry matter (421 g kg-1 fresh matter) and non-fibrous carbohydrates (893 g kg-1 dry matter), and the lowest concentrations of neutral detergent fiber (37.1 g kg-1 dry matter) . No significant differences were observed among treatments for lactic acid bacteria, yeast and mold counts in silages. Both genotypes resulted in silages with an adequate fermentation profile and considerably high aerobic stability, but with high effluent loss. The Caeté genotype showed to be potentially better for silage production due to its higher dry matter recovery. Due to the high level of effluent loss, it is recommended to test the effect of a moisture-absorbing additive during the ensiling process of these cassava roots.


2018 ◽  
Vol 70 (5) ◽  
pp. 1586-1594 ◽  
Author(s):  
L.O. Rosa ◽  
O.G. Pereira ◽  
K.G. Ribeiro ◽  
S.C. Valadares Filho ◽  
P.R. Cecon

ABSTRACT Fermentation profile and microbial population were assessed in soybean silages without any additive (control), with inoculant (I), with I + powdered molasses (I+M), and with powdered molasses only (M). Soybean plants were harvested at the R6 stage and ensiled in 2kg-capacity laboratory silos. The additives were added to the natural matter base of silages. The assessed fermentation periods were 1, 3, 7, 14, 28, and 56 days. A 4 × 6 factorial arrangement (4 additives × 6 fermentation periods) in a completely randomized design with 3 replicates was used. Lactic, acetic, and butyric acids concentrations were influenced by additives and periods (P< 0.05). It was observed higher lactic acid values to control silages, on the 56th day. Lower average values of acetic and butyric acids were observed to I+M and M silages. It was observed quadratic effect to pH values with a reduction estimated of 0.5504, 0.5358, 0.6312 and 0.6680 units to pH values to control, I, I+M, and M silages in the first 10 days. A maximum lactic acid bacteria population was observed at the 28th day of fermentation in silages with inoculant. The inoculant and powdered molasses improve the fermentation profile of soybean silages.


1994 ◽  
Vol 122 (1) ◽  
pp. 145-150 ◽  
Author(s):  
P. A. Martin ◽  
D. G. Chamberlain ◽  
S. Robertson ◽  
D. Hirst

SUMMARYIn each of two experiments, eight silages supplemented with concentrates containing a high proportion of either starch or digestible fibre were given to rumen-cannulated sheep. The silages constituted c. 65% of the total dry matter and differed widely in chemical composition, reflecting differences in the extent of fermentation in the silo.Rumen pH was lower (P < 0·01 and P < 0·001 for Expts 1 and 2 respectively) and the concentration of total volatile fatty acids (VFA) in the rumen was higher (P < 0·001 for Expt 2) for the starchy concentrate. Silages differed in their effects on ruminal proportions of acetate (P < 0·001 and P < 0·01 for Expts 1 and 2 respectively) and, inversely, of propionate (P < 0·001 for Expt 1). There was evidence of a strong relationship between the molar proportion of propionate in the rumen and the concentration of lactic acid in the silage. The results indicate that the production of propionate during the metabolism of silage lactic acid by the rumen microbial population was the predominant influence on rumen fermentation pattern.It is suggested that this relationship is the basis of some of the differences in milk production reported for silages showing restricted as opposed to extensive fermentation.


2017 ◽  
Vol 9 (9) ◽  
pp. 36
Author(s):  
Joao P. S. Rigueira ◽  
Odilon G. Pereira ◽  
Karina G. Ribeiro ◽  
Sebastião De C. V. Filho ◽  
Andréia S. Cezário ◽  
...  

The chemical composition, fermentation profile, microbial population and dry matter recovery were evaluated in marandu grass silages containing different levels of Stylo legume cv. Campo Grande treated or not with microbial inoculant. A 4 × 2 factorial arrangement (four levels of Stylo legume, with and without microbial inoculant) was used in a completely randomized design with four replications. The levels of Stylo legume used were 0, 10, 20 and 30% of the weight in the natural matter. The marandu grass was harvested at 70 days of regrowth and the Stylo legume at the pre-flowering stage. It was observed the effect of interaction between levels of Stylo legume and microbial inoculant on dry matter content, effluent losses, dry matter recovery and yeast and molds populations. The dry matter content of the silages with and without inoculant increased (P < 0.05) linearly with the addition of Stylo legume. A linear decreasing effect was observed for neutral detergent fiber contents and a linear crescent effect for the crude protein contents of the silages with addition of Stylo legume. The pH values had a quadratic effect with addition of Stylo legume, with a maximum value of 4.16 in the inclusion of 12.25% of Stylo legume. The LAB population increased linearly with an increase in the levels of Stylo legume. The dry matter recovery increased linearly with the addition of Stylo legume, in the silages without inoculant. It is concluded that the consortium of marandu grass with Stylo legume improves the chemical composition, fermentation profile, and decrease the dry matter losses of the silages, regardless of the use of microbial inoculant.


2021 ◽  
Vol 53 (1) ◽  
pp. 309-319
Author(s):  
Ana Paula Maia Dos Santos ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Gleidson Giordano Pinto de Carvalho ◽  
Gherman Garcia Leal de Araújo ◽  
...  

We evaluated the effects of urea addition on gas and effluent losses, fermentation profile, microbial populations, aerobic stability and chemical composition of corn silages. A completely randomised design with five levels of urea (0, 0.5, 1.0, 1.5, and 2.0% based on dry matter) and five replicates was used. A decreasing linear effect of urea levels on effluent losses in corn silages was observed. In parallel, an increasing linear effect of urea levels on pH, increasing from 3.49 to 4.12 in silages without urea in relation to silages with the maximum urea level, was also observed. Urea addition improved the aerobic stability of the silages, with 62 h for the silages without urea and from 90 to >96 h for the silages with urea. Based on the results of the principal components, two groups (I and II) could be distinguished. The most discriminating variables in group I were dry matter (-0.9), pH (-1.2) and lactic acid bacteria (-0.9), while in group II, effluent losses (1.0), ethanol (1.0), acetic acid (0.8) and gas losses (0.8) were most important. The use of urea at inclusion levels of around 2% in corn silage reduced gas losses, improved the nutritive value and promote the aerobic stability of silages. Highlights: The addition of urea in the corn silages increased the pH values from 3.49 (control) to 4.12 (2% of urea DM). The use of urea improved chemical composition of corn silages. The addition of urea reduced the moulds and yeast populations in the corn silages after exposure to air. Urea addition improved the aerobic stability of the corn silages.


2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Zhihao Dong ◽  
Junfeng Li ◽  
Lei Chen ◽  
Siran Wang ◽  
Tao Shao

ABSTRACT: This study was conducted to evaluate the effects of additives on the fermentation characteristics, chemical composition and in vitro digestibility of tetraploid black locust (TBL). The TBL leaves silage was either untreated (control) or treated with 1 × 106 cfu/g FM Lactobacillus plantarum (L), 1% glucose (G), 3% molasses (M), a combination of 1% glucose and Lactobacillus plantarum (L+G), or a combination of 3% molasses and Lactobacillus plantarum (L+M). Fermentation quality, chemical composition and nutrient digestibility were then analyzed. Ethanol and acetic acid concentrations were the dominant fermentation products in all silages except L+M silage. The L, G and L+G treatments failed to influence the fermentation. The M treatment increased (P<0.05) the lactic acid concentration and lowered (P<0.05) the pH when compared with control silage. The best fermentation properties were observed in L+M silage, as indicated by the dominance of lactic acid over ethanol in fermentation products. The M and L+M silages exhibited higher (P<0.05) dry matter, and M silage showed higher residual water-soluble carbohydrates than the control. Ensiling increased (P<0.05) the in vitro dry matter, neutral detergent fiber and acid detergent fiber degradability of TBL. Among the silages, M silage had the highest levels of dry matter, neutral detergent fiber and acid detergent fiber degradability. The obtained results suggested that application of lactic acid bacteria together with 3% molasses could be an effective strategy to prevent the occurrence of ethanol fermentation and improve fermentation quality of TBL silage; addition of fermentable sugars to TBL improves nutrient availability to ruminants.


2021 ◽  
pp. 1891-1908
Author(s):  
Mikael Neumann ◽  
◽  
Fernando Braga Cristo ◽  
Giovanna Bobato Pontarolo ◽  
Marlon Richard Hilario da Silva ◽  
...  

The objective of this study was to evaluate the efficiency of different types of sealing on the physical losses of dry matter, chemical and fermentation characteristics and in situ digestibility of the dry matter of corn silage stored in the feed out face (ramp) of trench silos. The experimental design used randomized blocks, composed of three treatments, namely: T1 - corn silage preserved with double-sided polyethylene of 110 μm thickness (conventional seal); T2 - corn silage preserved with double-sided polyethylene of 200 μm thickness (double-sided); and T3 - corn silage preserved with oxygen-impermeable film composed of double-sided polyethylene of 80 μm thickness on a translucent vacuum polyamide film of 20 μm thickness (double sealing), with four repetitions each. The use of double-sided polyethylene with 200 μm thickness (double-sided) and oxygen impermeable film composed of double-sided polyethylene and polyamide (double sealing), were effective in preserving the chemical composition, fermentation profile, raw protein composition and fiber quality, in addition, the use of these polymers resulted in greater ruminal digestibility of dry matter and reduced the pH, temperature, temperature gradient and physical losses of corn silage from the feed out face (ramp) of trench silos compared to the conventional sealing.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2437
Author(s):  
Mingming Zhu ◽  
Rongqing Xie ◽  
Liangyin Chen ◽  
Minghong You ◽  
Wenlong Gou ◽  
...  

This study aimed to investigate the effect of oat silage treated with a low-temperature-tolerant lactic acid bacteria (LAB) inoculant on milk yield and the quality of lactating yaks. Oat silages were prepared in big round bales, treated without (control) or with a low-temperature-tolerant LAB inoculant (a mixture of Lactobacillus plantarum BP18, Pediococcus pentosaceus HS1 and Lactobacillus buchneri LP22; the application rate of 105 cfu/g on a fresh matter basis). Eighteen lactating yaks were divided into nine pairs with a similar milk yield. Each pair of yaks was randomly allocated to the control or LAB-inoculated silage treatment. The inoculated silage increased the dry matter intake and the total volatile fatty acid (mainly acetate, propionate and butyrate) in rumen fluid compared with the control. The inoculated silage also enhanced the yield of yak milk with high contents of total N, fat and lactose. In addition, high levels of essential amino acids (Thr, Leu and Phe), polyunsaturated fatty acids and low saturated fatty acids were observed in milk when lactating yaks were fed with the inoculated silage. Therefore, inoculation with a low-temperature-tolerant LAB during ensiling could promote the milk yield of lactating yaks by enhancing dry matter intake and ruminal fermentation.


2014 ◽  
Vol 44 (5) ◽  
pp. 918-924 ◽  
Author(s):  
Ricardo Martins Araujo Pinho ◽  
Edson Mauro Santos ◽  
Fleming Sena Campos ◽  
João Paulo de Farias Ramos ◽  
Carlos Henrique Oliveira Macedo ◽  
...  

This study aimed to evaluate the fermentation characteristics, losses and the chemical composition of two pearl millet genotypes silages submitted to nitrogen fertilization. The experimental design was a completely randomized blocks in a split plot scheme 2x5 (two nitrogen genotypes doses x five doses of nitrogen), with four replicates. Nitrogen doses were 0, 20, 40, 60, 80kg ha-1 and the pearl millet genotypes were the variety ADR300 and the hybrid ADR7010. The hybrid ADR 7010 showed average lactic acid content higher than the variety ADR 300, at all doses of N, recording values ranging from 4.09 to 10.46dag kg-1. There was an interaction between nitrogren doses and genotypes for the neutral detergent fiber, which ranged from 51.81 to 63.63dag kg-1 of dry matter. Dry matter recovery decreased linearly with increasing nitrogen doses only for hybrid ADR7010, the same did not happen for the ADR300. The nitrogen fertilization does not favor the fermentation characteristics and increases DM losses of the hybrid ADR7010.


2018 ◽  
Vol 156 (9) ◽  
pp. 1123-1129 ◽  
Author(s):  
T. A. Del Valle ◽  
G. Antonio ◽  
T. F. Zenatti ◽  
M. Campana ◽  
E. M. C. Zilio ◽  
...  

AbstractThe current study aims to evaluate the effects of increasing levels of xylanase enzyme (XYL) on sugarcane silage fermentation, fermentative losses, chemical composition, dry matter (DM), neutral detergent fibre (NDF) degradation and aerobic stability. A completely randomized design trial was performed with five treatments and 50 experimental silos. Treatments were: 0, 100, 200, 300 and 400 mg of XYL per kg of DM. XYL contained 10 000 U/g. There was a quadratic effect of XYL on silage pH and acetic acid concentration: lower pH and higher acetic acid concentrations were found at intermediary levels of the enzyme. XYL decreased lactic acid concentration linearly. Furthermore, the enzyme had a quadratic effect on effluent and total losses, with higher losses at intermediary XYL levels. There was a quadratic effect of XYL on organic matter (OM), non-fibre carbohydrates (NFC) and crude protein (CP) content. In addition, a quadratic effect of XYL was observed on NDF content and degradation. Intermediary levels of XYL showed higher concentration of OM and NFC. The addition of XYL had no effect on silage temperature and pH after aerobic exposure. Thus, intermediate levels of XYL increased acetic acid and decreased silage pH. Besides positive effects on silage composition, intermediary XYL levels decreased NDF degradation.


Sign in / Sign up

Export Citation Format

Share Document