scholarly journals Calophyllum Oil Prospective as Alternate Fuel for Diesel Engine

Author(s):  
Shubham P ◽  
Shubham W ◽  
Chetan R ◽  
Rohit S

Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Biodiesel is a gifted substitute as an alternative fuel has gained significant attention due to the predicted littleness of conventional fuels and environmental concern. The utilization of liquid fuels such as biodiesel produced from Calophyllum inophyllum oil by transesterification process represents one of the most promising options for the use of conventional fossil fuels. The Calophyllum inophyllum oil is converted into Calophyllum inophyllum methyl ester known as biodiesel processed in the presence of homogeneous acid catalyst. The physical properties such as Kinematic viscosity, Density, Calorific Value, Cetane number, Fire point and Flash point were found out for Calophyllum inophyllum methyl ester at different blends.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1046
Author(s):  
Jenna Ruokonen ◽  
Harri Nieminen ◽  
Ahmed Rufai Dahiru ◽  
Arto Laari ◽  
Tuomas Koiranen ◽  
...  

The ambitious CO2 emission reduction targets for the transport sector set in the Paris Climate Agreement require low-carbon energy solutions that can be commissioned rapidly. The production of gasoline, kerosene, and diesel from renewable methanol using methanol-to-olefins (MTO) and Mobil’s Olefins to Gasoline and Distillate (MOGD) syntheses was investigated in this study via process simulation and economic analysis. The current work presents a process simulation model comprising liquid fuel production and heat integration. According to the economic analysis, the total cost of production was found to be 3409 €/tfuels (273 €/MWhLHV), corresponding to a renewable methanol price of 963 €/t (174 €/MWhLHV). The calculated fuel price is considerably higher than the current cost of fossil fuels and biofuel blending components. The price of renewable methanol, which is largely dictated by the cost of electrolytic hydrogen and renewable electricity, was found to be the most significant factor affecting the profitability of the MTO-MOGD plant. To reduce the price of renewable fuels and make them economically viable, it is recommended that the EU’s sustainable transport policies are enacted to allow flexible and practical solutions to reduce transport-related emissions within the member states.


Author(s):  
Biplab K. Debnath ◽  
Ujjwal K. Saha ◽  
Niranjan Sahoo

Palm Oil Methyl Ester (POME) is a very promising alternative renewable biofuel. This is because it has a better cetane number and a comparable lower calorific value with respect to its competitors. However, due to difference in molecular composition and hence dissimilar properties, it does not perform proficiently in diesel engine with standard design and operating parameters. Therefore, a study is arranged to realize the effect of compression ratio variation on POME run in diesel engine. The load is varied from ‘no load’ to ‘full load’ with six equal intervals. During this study, standard diesel injection timing is maintained unaffected. The study conveys that at higher compression ratio, POME causes reduction in brake fuel consumption and thereby increases the engine efficiency. The increase in compression ratio also causes smoother combustion, lower ignition delay with early heat release than diesel operation. The detrimental emission quantities in the form of carbon monoxide, oxides of nitrogen and hydrocarbon emissions are also cut down with presence of POME in the diesel engine at high compression ratio. Thus, POME can be regarded as a good alternative fuel for diesel engine for locomotive applications.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4836
Author(s):  
Laura Aguado-Deblas ◽  
Rafael Estevez ◽  
Jesús Hidalgo-Carrillo ◽  
Felipa M. Bautista ◽  
Carlos Luna ◽  
...  

Today, biofuels are indispensable in the implementation of fossil fuels replacement processes. This study evaluates ethyl acetate (EA) as a solvent of two straight vegetable oils (SVOs), castor oil (CO), and sunflower oil (SO), in order to obtain EA/SVO double blends that can be used directly as biofuels, or along with fossil diesel (D), in the current compression-ignition (C.I.) engines. The interest of EA as oxygenated additive lies not only in its low price and renewable character, but also in its very attractive properties such as low kinematic viscosity, reasonable energy density, high oxygen content, and rich cold flow properties. Revelant fuel properties of EA/SVO double and D/EA/SVO triple blends have been object of study including kinematic viscosity, pour point (PP), cloud point (CP), calorific value (CV), and cetane number (CN). The suitability of using these blends as fuels has been tested by running them on a diesel engine electric generator, analyzing their effect on engine power output, fuel consumption, and smoke emissions. Results obtained indicate that the D/EA/SO and D/EA/CO triple blends, composed by up to 24% and 36% EA, respectively, allow a fossil diesel substitution up to 60–80% providing power values very similar to conventional diesel.In addition, in exchange of a slight fuel consumption, a very notable lessening in the emission of pollutants as well as a better behavior at low temperatures, as compared to diesel, are achieved.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xiaolei Wang ◽  
Shuang Liang ◽  
Hui Wang ◽  
Shaohua Huang ◽  
Binbin Liao

Energy intensive industries (EIIs) in China are predominantly reliant on fossil fuels. Consequently, such high fossil fuel dependency has amplified carbon emission levels and blocked the low-carbon transition. It is inappropriate to discuss the solution of the dependency before investigating fossil-fuel price distortion and its impact on the industrial energy consumption. Therefore, this paper built a dynamic trans-log cost function model based on provincial panel data of China’s Ells between 2004 and 2016, to investigate inter-fuel substitution effects caused by own price elasticities and cross price elasticities, and analyzed the impact of fossil-fuel price distortions on low-carbon transition. The level of price distortions in coal, gasoline and diesel was evaluated, based on which the CO2 mitigation potentials in China’s EIIs were estimated. Results show that: 1) in each EII sector, the own price elasticities of all fuels were negative while the cross price elasticities among coal, oil and electricity were positive, suggesting substitution effect exists; 2) the average level of price distortions in coal, gasoline and diesel is 7.48, 11.1 and 32.19%, respectively, which means the prices of coal tend to be more market- oriented than the other two fuels; 3) removing coal price distortions can potentially reduce CO2 emissions in China’s EIIs by 905.78 million tons, while the effects of removing oil price distortions were uncertain, unless the substitution of coal for oil was restrained. Therefore, there is still much room for improvement in China’s fossil-fuel market reform. Possible policies are required to improve the production in EIIs and the low-carbon transition by adopting cleaner energy resources to substitute fossil-fuels.


2020 ◽  
Vol 24 (1 Part A) ◽  
pp. 27-36 ◽  
Author(s):  
Shrikant Madiwale ◽  
Karthikeyan Alagu ◽  
Virendra Bhojwani

In last few years in automobile sector there is a emerging need of an alternative fuel because of depletion of the stock of fossil fuels in all over the world. Bio-diesel in this regard contested a strong alternative to the conventional fuels. Bio-diesel contains 9-10% higher oxygen and higher cetane number which allows its good combustion in the combustion chambers of the engine. But poor hot flow and cold flow properties of biodiesel restricts their applications in the field of automotives. So the blends of biodiesel in percentage with diesel and ethanol as an properties enhancer additives are used in the biodiesel/diesel blend. Reduced viscosity, higher calorific value, improved flash and fire point and enhanced cold flow properties of the blends with ethanol as an additive, enhanced the combustion and reduced harmful emissions from the engine. Experimental work presented in this paper is by considering cottonseed biodiesel as raw feedstock blended with diesel and 5% ethanol. Properties were investigated experimentally as per IS 1448 standards. Trials were conducted on the single cylinder diesel. Results show that there are significant improvements in the properties of the blend, performance, combustion and reduced harmful emission from the engine. Experimental investigation reported that ethanol as an additives in the blends of cotton-seed biodiesel with diesel reduces kinematic viscosity by 7%, cold flow properties by 9% to 10% . But on the other hand but density of the blend is increased by 3% and higher heating value is decreased by 9%.


The ever increasing utilization of energy has resulted in the nation becoming progressively more dependent on fossil fuels such as oil, coal and gas. The mounting prices of crude oil and natural gas and their impending paucity have raised qualms about the security of energy supply in future, which has severe consequence on the augmentation of a countries economy. The alternative to fossil fuels are the nonconventional energy sources, they are plentiful, renewable, pollution-free and eco-friendly. Therefore, the need to utilize renewable energy sources like solar energy, wind, tide, biodiesel has publicized its significance. Biodiesel is one of the unsurpassed resources that have come to the cutting edge recently. In this article, highly rated research journals on biofuels were referred and a detailed assessment has been conducted to emphasize different aspects to biodiesel engineering. These aspects include biodiesel feed stocks, a range of various methods used in production of biodiesel such as pyrolysis, micro emulsion, dilution and transesterification (alcoholysis). The study was extended to understand the effect of biodiesel blend magnitude on the performance of engine parameters such as brake power (BP), brake thermal efficiency (BTE) and fuel properties like cloud point, flash point, calorific value, kinematic viscosity, density, and cetane number as well as the economic viability, emission characteristics and finally Greenhouse gas emissions


2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Soni S. Wirawan dkk

Biodiesel is a viable substitute for petroleum-based diesel fuel. Its advantages are improved lubricity, higher cetane number and cleaner emission. Biodiesel and its blends with petroleum-based diesel fuel can be used in diesel engines without any signifi cant modifi cations to the engines. Data from the numerous research reports and test programs showed that as the percent of biodiesel in blends increases, emission of hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) all decrease, but the amount of oxides of nitrogen (NOx) and fuel consumption is tend to increase. The most signifi cant hurdle for broader commercialization of biodiesel is its cost. In current fuel price policy in Indonesia (especially fuel for transportation), the higher percent of biodiesel in blend will increase the price of blends fuel. The objective of this study is to assess the optimum blends of biodiesel with petroleum-based diesel fuel from the technically and economically consideration. The study result recommends that 20% biodiesel blend with 80% petroleum-based diesel fuel (B20) is the optimum blend for unmodifi ed diesel engine uses.Keywords: biodiesel, emission, optimum, blend


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Made Dirgantara ◽  
Karelius Karelius ◽  
Marselin Devi Ariyanti, Sry Ayu K. Tamba

Abstrak – Biomassa merupakan salah satu energi terbarukan yang sangat mudah ditemui, ramah lingkungan dan cukup ekonomis. Keberadaan biomassa dapat dimaanfaatkan sebagai pengganti bahan bakar fosil, baik itu minyak bumi, gas alam maupun batu bara. Analisi diperlukan sebagai dasar biomassa sebagai energi seperti proksimat dan kalor. Analisis terpenting untuk menilai biomassa sebagai bahan bakar adalah nilai kalori atau higher heating value (HHV). HHV secara eksperimen diukur menggunakan bomb calorimeter, namun pengukuran ini kurang efektif, karena memerlukan waktu serta biaya yang tinggi. Penelitian mengenai prediksi HHV berdasarkan analisis proksimat telah dilakukan sehingga dapat mempermudah dan menghemat biaya yang diperlukan peneliti. Dalam makalah ini dibahas evaluasi persamaan untuk memprediksi HHV berdasarkan analisis proksimat pada biomassa berdasarkan data dari penelitian sebelumnya. Prediksi nilai HHV menggunakan lima persamaan yang dievaluasi dengan 25 data proksimat biomassa dari penelitian sebelumnya, kemudian dibandingkan berdasarkan nilai error untuk mendapatkan prediksi terbaik. Hasil analisis menunjukan, persamaan A terbaik di 7 biomassa, B di 6 biomassa, C di 6 biomassa, D di 5 biomassa dan E di 1 biomassa.Kata kunci: bahan bakar, biomassa, higher heating value, nilai error, proksimat  Abstract – Biomass is a renewable energy that is very easy to find, environmentally friendly, and quite economical. The existence of biomass can be used as a substitute for fossil fuels, both oil, natural gas, and coal. Analyzes are needed as a basis for biomass as energy such as proximate and heat. The most critical analysis to assess biomass as fuel is the calorific value or higher heating value (HHV). HHV is experimentally measured using a bomb calorimeter, but this measurement is less effective because it requires time and high costs. Research on the prediction of HHV based on proximate analysis has been carried out so that it can simplify and save costs needed by researchers. In this paper, the evaluation of equations is discussed to predict HHV based on proximate analysis on biomass-based on data from previous studies. HHV prediction values using five equations were evaluated with 25 proximate biomass data from previous studies, then compared based on error value to get the best predictions. The analysis shows that Equation A predicts best in 7 biomass, B in 6 biomass, C in 6 biomass, D in 5 biomass, and E in 1 biomass. Key words: fuel, biomass, higher heating value, error value, proximate 


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


Sign in / Sign up

Export Citation Format

Share Document