The Influence of CaCO3 Scale Formation on AC Corrosion Rates of Pipeline Steel Under Cathodic Protection

CORROSION ◽  
10.5006/2637 ◽  
2017 ◽  
Vol 74 (5) ◽  
pp. 551-565 ◽  
Author(s):  
E. Ghanbari ◽  
R.S. Lillard

In this paper, the influence of CaCO3 scale formation on the AC corrosion rate of pipeline steel under cathodic protection was investigated. The CaCO3 layer was deposited on X65 steel electrochemically and then studied in a soil simulant. A method for determining the fractional surface coverage of the scale based on either deposition current or electrochemical impedance spectroscopy data is presented. After the deposition process, samples were exposed to 3 V root mean square (RMS) AC potential at 60 Hz and varying degrees of cathodic protection at DC potentials of −770, −700, −650, and −600 mV vs. saturated calomel electrode. It was demonstrated that the scale acts as a simple barrier and the corrosion rate of steel, exposed at the base of pores in the scale, is equal to that of boldly exposed samples. These results are discussed in the light of the previously developed theoretical model for AC corrosion.

Author(s):  
A. Q. Fu ◽  
Y. F. Cheng

The alternating current (AC)-induced corrosion of a cathodically protected X65 pipeline steel was studied in a high pH, concentrated carbonate/bicarbonate solution. Results demonstrated that the corrosion rate of the steel increases with the AC current density, and AC interference could increase the pitting corrosion of the steel. In the absence of AC interference or at a low AC current density, i.e., 20 A/m2, a cathodic protection (CP) potential of −950 mV(Cu/CuSO4 electrode, CSE), which is 100 mV more cathodic than −850 mV(CSE) recommended by National Association of Corrosion Engineers (NACE), provides a full protection over the steel. When the AC current density is higher than 20 A/m2, the NACE-recommended CP is incapable of protecting the pipeline from corrosion. A new CP standard is thus developed for recommendation to industry to avoid AC corrosion of pipelines.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 249
Author(s):  
El-Sayed M. Sherif ◽  
Magdy M. El Rayes ◽  
Hany S. Abdo

In the present work, a layer of 75%Cr3C2−25%NiCr with thickness of 260 ± 15 µm was coated onto the API-2H pipeline steel surface using high-velocity oxy-fuel deposition. The effect of 75%Cr3C2−25%NiCr coating on the corrosion of the API steel after 1 h, 24 h, and 48 h exposure in 4.0% sodium chloride solutions is reported. The corrosion tests were performed using potentiodynamic cyclic polarization, electrochemical impedance spectroscopy, and chronoamperometric current–time techniques along with scanning electron microscopy and energy-dispersive X-ray analyses. The curves of polarization indicated that the presence of the coating increases the corrosion resistance of the steel through decreasing its corrosion current and corrosion rate. Impedance data showed that all resistances recorded higher values for the coated API steel. Chronoamperometric current–time measurements confirmed that the coated API steel has lower absolute current values and thus lower corrosion rate. All results proved that the presence of 75%Cr3C2−25%NiCr coating enhances the corrosion resistance of the API steel via the formation of a protective layer of Cr and Ni oxides, which could lead to decreasing the corrosion rate.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 949 ◽  
Author(s):  
Wei Wu ◽  
Hailong Yin ◽  
Hao Zhang ◽  
Jia Kang ◽  
Yun Li ◽  
...  

An investigation into the electrochemical corrosion behavior of X80 pipeline steel under different elastic and plastic tensile stress in a CO2-saturated NaCl solution has been carried out by using open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopy, and surface analysis techniques. The results show that the corrosion rate of X80 steel first increases and then slightly decreases with the increase of elastic tensile stress, whereas the corrosion rate sharply increases with the increase of plastic tensile stress. Both elastic and plastic tensile stress can enhance steel corrosion by improving the electrochemical activity of both anodic and cathodic reactions. Moreover, compared with elastic tensile stress, plastic tensile stress has a more significant effect. Furthermore, electrochemical reactions for CO2 corrosion and mechanoelectrochemical effect are used to reasonably explain the corrosion behavior of stressed X80 steel in CO2 environment.


2021 ◽  
Vol 11 (19) ◽  
pp. 9329
Author(s):  
Shahid Parapurath ◽  
Arjun Ravikumar ◽  
Nader Vahdati ◽  
Oleg Shiryayev

Limited studies have been conducted on the effect of a magnetic field on the corrosion behavior of steels. Investigating the effect on pipeline material in the oil and gas industries will be beneficial regarding corrosion prediction and control. In this work, the effect of a magnetic field on the corrosion process of API 5L X65 carbon steel was investigated in a well-developed flow loop using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Using permanent magnets and a well-designed corrosion electrode set-up, the corrosion mechanism of API 5L X65 steel was studied at different magnetic orientations and different flow conditions in a NaCl solution. The surface morphology of the corroded samples was studied using a scanning electron microscope, and the micro-morphologies of the corrosion deposits and the surface elemental composition were analyzed. The results show that the presence of a magnetic field increases the corrosion rate of API 5L X65 carbon steel, and that flow velocities and magnetic orientation have a significant influence on the anodic corrosion current. The results of the polarization curves indicate a negative shift in the Tafel curve, leading to an increase in the corrosion rate with the introduction of a magnetic field in the flow system. The results of the EIS show that the charge transfer rate is decreased when a magnetic field is applied. This work provides important direction in terms of the understanding of the combined effect of magnetism and flow on the corrosion in pipelines used in the oil and gas industries.


2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 744
Author(s):  
Ameeq Farooq ◽  
Umer Masood Chaudry ◽  
Ahsan Saleem ◽  
Kashif Mairaj Deen ◽  
Kotiba Hamad ◽  
...  

To protect steel structures, zinc coatings are mostly used as a sacrificial barrier. This research aims to estimate the dissolution tendency of the electroplated and zinc-rich cold galvanized (ZRCG) coatings of a controlled thickness (35 ± 1 μm) applied via brush and dip coating methods on the mild steel. To assess the corrosion behavior of these coated samples in 3.5% NaCl and 10% NaCl containing soil solutions, open circuit potential (OCP), cyclic polarization (CP), and electrochemical impedance spectroscopy (EIS) tests were performed. The more negative OCP and appreciably large corrosion rate of the electroplated and ZRCG coated samples in 3.5% NaCl solution highlighted the preferential dissolution of Zn coatings. However, in saline soil solution, the relatively positive OCP (>−850 mV vs. Cu/CuSO4) and lower corrosion rate of the electroplated and ZRCG coatings compared to the uncoated steel sample indicated their incapacity to protect the steel substrate. The CP scans of the zinc electroplated samples showed a positive hysteresis loop after 24 h of exposure in 3.5% NaCl and saline soil solutions attributing to the localized dissolution of the coating. Similarly, the appreciable decrease in the charge transfer resistance of the electroplated samples after 24 h of exposure corresponded to their accelerated dissolution. Compared to the localized dissolution of the electroplated and brush-coated samples, the dip-coated ZRCG samples exhibited uniform dissolution during the extended exposure (500 h) salt spray test.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2491
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

The number of reinforced concrete structures subject to anoxic conditions such as offshore platforms and geological storage facilities is growing steadily. This study explored the behaviour of embedded steel reinforcement corrosion under anoxic conditions in the presence of different chloride concentrations. Corrosion rate values were obtained by three electrochemical techniques: Linear polarization resistance, electrochemical impedance spectroscopy, and chronopotenciometry. The corrosion rate ceiling observed was 0.98 µA/cm2, irrespective of the chloride content in the concrete. By means of an Evans diagram, it was possible to estimate the value of the cathodic Tafel constant (bc) to be 180 mV dec−1, and the current limit yielded an ilim value of 0.98 µA/cm2. On the other hand, the corrosion potential would lie most likely in the −900 mVAg/AgCl to −1000 mVAg/AgCl range, whilst the bounds for the most probable corrosion rate were 0.61 µA/cm2 to 0.22 µA/cm2. The experiments conducted revealed clear evidence of corrosion-induced pitting that will be assessed in subsequent research.


Author(s):  
Kaikai Li ◽  
Wei Wu ◽  
Guangxu Cheng ◽  
Yun Li ◽  
Haijun Hu ◽  
...  

Natural gas transmission pipeline is prone to internal corrosion due to the combination of corrosive impurities in the pipe (such as CO2, H2S and chlorides) and applied pressure of the pipeline, which seriously affects the safe operation of the pipeline. In this work, the corrosion behavior of a typical X70 pipeline steel was investigated by using potentiodynamic polarization and electrochemical impendence spectroscopy (EIS). The polarization and EIS data under different CO2 partial pressures (0–1 atm), H2S concentrations (0–150 ppm), chloride concentrations (0–3.5 wt%) and tensile stress (0–400 MPa) were obtained. The results show that corrosion rate increases with the increase of CO2 partial pressure and chloride concentration, respectively, while first increases and then decreases with the increase H2S concentrations. The corrosion rate is less affected by elastic tensile stress. In addition, a quantitative prediction model for corrosion rate of natural gas pipeline based on adaptive neuro-fuzzy inference system (ANFIS) was established by fitting the experimental data which maps the relationship between the key influencing factors (i.e. CO2 partial pressure, H2S concentration, chloride concentration and tensile stress) and the corrosion rate. The prediction results show that the relative percentage errors of the predicted and experimental values are relatively small. The prediction accuracy of the model satisfies the engineering application requirement.


2020 ◽  
Vol 58 (4) ◽  
pp. 263-271
Author(s):  
Yaejin Hong ◽  
Seung-Hwan Jeon ◽  
Hyukhyun Ryu ◽  
Won-Jae Lee

In this study, Fe2O3 photoelectrode thin films were grown on fluorine-doped tin oxide substrates at various temperatures ranging from 145 to 220 oC using modified chemical bath deposition. The morphological, structural, electrical, and photoelectrochemical properties of the resulting Fe2O3 photoelectrode were analyzed using field emission scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy, and a three-electrode potentiostat/galvanostat, respectively. Growth temperature and hydrochloric acid etching both affected the growth of the Fe2O3 photoelectrode, with Fe2O3 thin film thickness first increasing and then decreasing as growth temperature increased. The pH value of the precursor solution varied according to growth temperature, which in turn affected film thickness. The highest photocurrent density (0.53 mA/cm2 at 0.5 V vs. saturated calomel electrode) was obtained from the Fe2O3 photoelectrode grown at 190 oC, which yielded the thickest thin film, smallest full width at half maximum and largest grain size for the (104) and (110) plane, and highest flat-band potential value. Based on these findings, the photoelectrochemical properties of Fe2O3 photoelectrodes grown at various temperatures are strongly affected by their morphological, structural, and electrical properties.


Sign in / Sign up

Export Citation Format

Share Document