scholarly journals Increased cave use by butterflies and moths: a response to climate warming?

2021 ◽  
Vol 50 (1) ◽  
pp. 15-24
Author(s):  
Otto Moog ◽  
◽  
Erhard Christian ◽  
Rudolf Eis ◽  

Between 2015 and 2019, the list of Lepidoptera from “cave” habitats (i.e., proper caves, rock shelters and artificial subterranean structures) in Austria grew from 17 to 62 species, although the effort of data collection remained nearly constant from the late 1970s onwards. The newly recorded moths and butterflies were resting in caves during daytime in the the warm season, three species were also overwintering there. We observed Catocala elocata at 28 cave inspections, followed by Mormo maura (18), Catocala nupta (7), Peribatodes rhomboidaria, and Euplagia quadripunctaria (6). More than half of the species have been repeatedly observed in caves in Austria or abroad, so their relationship with such sites is apparently not completely random. Since the increase of records in Austria coincided with a considerable rise in the annual number of hot days (maximum temperatures ≥30°C) from 2015 onwards, we interpret the growing inclination of certain Lepidoptera towards daytime sheltering in caves as a behavioral reaction to climate warming.

1958 ◽  
Vol 39 (4) ◽  
pp. 202-204
Author(s):  
Philip Williams

An objective method is developed for forecasting the current day's maximum temperature at Salt Lake City during the warm season, May–October. Good results are obtained by using either the height of the freezing level or the 700-mb temperature at 0800 MST at Salt Lake City combined with the 0830 MST surface temperature and the 0530–0830 MST surface temperature change. Results are compared with subjective forecasts.


2018 ◽  
Vol 115 (44) ◽  
pp. E10397-E10406 ◽  
Author(s):  
Bradford C. Lister ◽  
Andres Garcia

A number of studies indicate that tropical arthropods should be particularly vulnerable to climate warming. If these predictions are realized, climate warming may have a more profound impact on the functioning and diversity of tropical forests than currently anticipated. Although arthropods comprise over two-thirds of terrestrial species, information on their abundance and extinction rates in tropical habitats is severely limited. Here we analyze data on arthropod and insectivore abundances taken between 1976 and 2012 at two midelevation habitats in Puerto Rico’s Luquillo rainforest. During this time, mean maximum temperatures have risen by 2.0 °C. Using the same study area and methods employed by Lister in the 1970s, we discovered that the dry weight biomass of arthropods captured in sweep samples had declined 4 to 8 times, and 30 to 60 times in sticky traps. Analysis of long-term data on canopy arthropods and walking sticks taken as part of the Luquillo Long-Term Ecological Research program revealed sustained declines in abundance over two decades, as well as negative regressions of abundance on mean maximum temperatures. We also document parallel decreases in Luquillo’s insectivorous lizards, frogs, and birds. While El Niño/Southern Oscillation influences the abundance of forest arthropods, climate warming is the major driver of reductions in arthropod abundance, indirectly precipitating a bottom-up trophic cascade and consequent collapse of the forest food web.


Climate ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 29 ◽  
Author(s):  
Augusta Williams ◽  
Joseph Allen ◽  
Paul Catalano ◽  
John Spengler

Climate change is resulting in heatwaves that are more frequent, severe, and longer lasting, which is projected to double-to-triple the heat-related mortality in Boston, MA if adequate climate change mitigation and adaptation strategies are not implemented. A case-only analysis was used to examine subject and small-area neighborhood characteristics that modified the association between hot days and mortality. Deaths of Boston, Massachusetts residents that occurred from 2000–2015 were analyzed in relation to the daily temperature and heat index during the warm season as part of the case-only analysis. The modification by small-area (census tract, CT) social, and environmental (natural and built) factors was assessed. At-home mortality on hot days was driven by both social and environmental factors, differentially across the City of Boston census tracts, with a greater proportion of low-to-no income individuals or those with limited English proficiency being more highly represented among those who died during the study period; but small-area built environment features, like street trees and enhanced energy efficiency, were able to reduce the relative odds of death within and outside the home. At temperatures below current local thresholds used for heat warnings and advisories, there was increased relative odds of death from substance abuse and assault-related altercations. Geographic weighted regression analyses were used to examine these relationships spatially within a subset of at-home deaths with high-resolution temperature and humidity data. This revealed spatially heterogeneous associations between at-home mortality and social and environmental vulnerability factors.


1998 ◽  
Vol 78 (1) ◽  
pp. 171-179 ◽  
Author(s):  
R. L. Raddatz ◽  
C. F. Shaykewich

How do warm summers (June–July–August) influence the actual evapotranspiration totals from cropped land sown to spring wheat on the eastern Canadian Prairies? The eastern Prairies is a semi-arid region where over 60% of the land is cultivated. Over a third of the cropped land is usually sown to spring wheat. A comparison of mean summer temperatures and modelled evapotranspiration, for the years 1988 to 1996, demonstrated that with the current environmental conditions and farming practices, warm summers have lower actual evapotranspiration totals from spring wheat than cool summers. The average daily actual evapotranspiration rate is generally higher in years with higher mean summer temperatures; however, the crop growth-period is shorter. The net effect is lower total actual evapotranspiration from spring wheat. This suggests that climate warming on the eastern Canadian Prairies, if the current trend continues and all other factors remain equal, will reduce, on average, the total actual evapotranspiration from spring wheat. A reduction in the growth-period actual evapotranspiration from lands sown to spring wheat will likely decrease the total actual evapotranspiration for the entire warm season as growth-period evapotranspiration currently makes up about three-quarters of the seasonal total. However, the magnitude and timing of the reduction is far from certain. The consequence for agriculture may be a reduction in the average spring wheat yield because yield is positively correlated with the actual evapotranspiration total from the crop. Key words: Modelling, crop growth-period, yield, climate warming


2010 ◽  
Vol 6 (5) ◽  
pp. 669-673 ◽  
Author(s):  
David J. Marshall ◽  
Christopher D. McQuaid ◽  
Gray A. Williams

There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.


2016 ◽  
Vol 10 (1) ◽  
pp. 31-50 ◽  
Author(s):  
Małgorzata Owczarek ◽  
Janusz Filipiak

Abstract The main subject of the research whose outcomes are presented in this paper is the spatial and temporal variability of thermal conditions in Poland during the period from 1951 to 2015. The analysis revealed the occurrence of symptoms indicating a systematic and sustained warming. Significant growth is observed in mean and extreme temperatures and their extreme percentiles, as well as in annual number of hot days, warm waves and their duration. In turn, downward trends are noted in series of the annual number of frost days, as well as in the number of cold waves and their duration. The results obtained confirm the thermal pattern determined for the whole region, especially for the southern part of the Baltic Sea basin.


2021 ◽  
Author(s):  
Terhi K. Laurila ◽  
Hilppa Gregow ◽  
Joona Cornér ◽  
Victoria A. Sinclair

Abstract. Extratropical cyclones play a major role in the atmospheric circulation, weather variability and can cause damage to society. Extratropical cyclones in Northern Europe, which is located at the end of the North Atlantic storm track, have been less studied than extratropical cyclones elsewhere. Our study investigates extratropical cyclones and windstorms in Northern Europe (which in this study covers Norway, Sweden, Finland, Estonia and parts of the Baltic, Norwegian and Barents Seas) by analysing their characteristics, spatial and temporal evolution and precursors. We examine cold and warm seasons separately to determine seasonal differences. We track all extratropical cyclones in Northern Europe, create cyclone composites and use an ensemble sensitivity method to analyse the precursors. The ensemble sensitivity analysis is a novel method in cyclone studies where linear regression is used to statistically identify what variables possibly influence the subsequent evolution of extratropical cyclones. We investigate windstorm precursors for both the minimum mean sea level pressure (MSLP) and for the maximum 10-m wind gusts. The annual number of extratropical cyclones and windstorms have a large inter-annual variability and no significant linear trends during 1980–2019. Windstorms originate and occur over the Barents and Norwegian Seas whereas weaker extratropical cyclones originate and occur over land areas in Northern Europe. During the windstorm evolution, the maximum wind gusts move from the warm sector to behind the cold front following the strongest pressure gradient. Windstorms in both seasons are located on the poleward side of the jet stream. The maximum wind gusts occur nearly at the same time than the minimum MSLP occurs. The cold season windstorms have higher sensitivities and thus are potentially better predictable than warm season windstorms, and the minimum MSLP has higher sensitivities than the maximum wind gusts. Of the four examined precursors, both the minimum MSLP and the maximum wind gusts are the most sensitive to the 850-hPa potential temperature anomaly i.e. the temperature gradient. Hence, this parameter is likely important when predicting windstorms in Northern Europe.


Author(s):  
Yuri Matheus Neves Silva ◽  
Helder Martins Silva ◽  
Raiany Dias De Andrade Silva ◽  
Eduardo Duarte Marques ◽  
Olga Venimar De Oliveira Gomes

The phenomenon of urban heat islands (UHI) is caused by the increase in temperatures of an urban area as a result of the development of human activities within that area, this phenomenon is usually studied in medium and large cities. This study aims to verify if the phenomenon of UHI occurs in the municipality of Três Rios – RJ, a small sized city. This study included the use of mobile transect, through pre-established data collection points/stations. Five data collection points were selected, from which one was included in a rural area, one in the Parque Natural Municipal (Urban Park, within the city), and three points within the urbanized area. The equipment used was the Brunton® / ADC PRO handheld weather station. The data collection period ranged from September 2018 until July 2019, which included the four seasons. Measurements were taken at 6:00, 12:00, 15:00, 18:00, and 21:00h, in alternate days during the study period. Considering the temperature measurements, two different indicators of thermal variability were used. Strong magnitude heat islands were detected, taking into consideration the relevant variation of maximum temperatures observed in the urban area when compared to the rural area. The results indicate the most affected populations to be the ones located within urban areas, mostly individuals under socioeconomic vulnerability. The results obtained can be used as support for the development of strategies to minimize the thermal discomfort to populations exposed to the influence of higher magnitude urban heat islands.


2021 ◽  
Vol 2 (4) ◽  
pp. 1111-1130
Author(s):  
Terhi K. Laurila ◽  
Hilppa Gregow ◽  
Joona Cornér ◽  
Victoria A. Sinclair

Abstract. Extratropical cyclones play a major role in the atmospheric circulation and weather variability and can cause widespread damage and destruction. Extratropical cyclones in northern Europe, which is located at the end of the North Atlantic storm track, have been less studied than extratropical cyclones elsewhere. Our study investigates extratropical cyclones and windstorms in northern Europe (which in this study covers Norway; Sweden; Finland; Estonia; and parts of the Baltic, Norwegian, and Barents seas) by analysing their characteristics, spatial and temporal evolution, and precursors. We examine cold and warm seasons separately to determine seasonal differences. We track all extratropical cyclones in northern Europe, create cyclone composites, and use an ensemble sensitivity method to analyse the precursors. The ensemble sensitivity analysis is a novel method in cyclone studies where linear regression is used to statistically identify what variables possibly influence the subsequent evolution of extratropical cyclones. We investigate windstorm precursors for both the minimum mean sea level pressure (MSLP) and for the maximum 10 m wind gusts. The annual number of extratropical cyclones and windstorms has a large inter-annual variability and no significant linear trends during 1980–2019. Windstorms originate and occur over the Barents and Norwegian seas, whereas weaker extratropical cyclones originate and occur over land areas in northern Europe. During the windstorm evolution, the maximum wind gusts move from the warm sector to behind the cold front following the strongest pressure gradient. Windstorms in both seasons are located on the poleward side of the jet stream. The maximum wind gusts occur nearly at the same time as the minimum MSLP occurs. The cold-season windstorms have higher sensitivities and thus are potentially better predictable than warm-season windstorms, and the minimum MSLP has higher sensitivities than the maximum wind gusts. Of the four examined precursors, both the minimum MSLP and the maximum wind gusts are the most sensitive to the 850 hPa potential temperature anomaly, i.e. the temperature gradient. Hence, this parameter is likely important when predicting windstorms in northern Europe.


2021 ◽  
Author(s):  
Aleš Urban ◽  
Osvaldo Fonseca-Rodríguez ◽  
Claudia Di Napoli ◽  
Eva Plavcová ◽  
Jan Kyselý

<p>Studies projecting the impacts of future climate change on temperature-mortality relationships suggest increasing heat-related mortality in most regions of the world. On the contrary, a reduced risk of heat-related mortality has been observed in many countries over the last decades, suggesting a positive effect of technological development and improved health care systems. However, most of the studies show that the decline in vulnerability of populations to heat has abated in the early 2000s and further decreasing trend is unlikely.</p><p>In this study, we analysed temperature-mortality relationships in Prague, Czech Republic during 1982–2019. The study was restricted to five warmest months (May–September). To investigate possible changes in the temperature–mortality relationship, the study period was divided in four decades (1980s to 2010s). Conditional Poisson Regression coupled with the Distributed Lag Non-Linear Model (DLNM) was run separately in each decade, to derive decade-specific temperature–mortality associations. A stratum indicator variable composed of year, month, and day of the week was used to control for long-term, seasonal trends and weekly effects. The DLNM approach was applied in order to analyse delayed effects of temperature on mortality. The attributable number of deaths (AD) and the attributable fraction (AF %) of total May–September deaths on hot days was calculated from the model’s outputs, separately for each decade. Hot days were defined as days with daily mean temperature larger than the 95th percentile of the decade-specific May–September distribution.</p><p>We observed a quadratic trend shape in the number of deaths attributable to heat; maximum in the 2010s and minimum in the 1990s. The total number of heat-attributable deaths increased from ≈500 to almost 900 per decade between the 1980s and the 2010s, which corresponds to the fraction of 0.90 and 1.75 %, respectively, of the total number of deaths in a warm season.</p>


Sign in / Sign up

Export Citation Format

Share Document