scholarly journals The role of sulphate-reducing bacteria in mercury-contaminated estuarine sediments : a case study of Durban Bay

2003 ◽  
Author(s):  
◽  
Elizabeth Anne Simpson

Stimulated by the findings of international researchers, that the sulfate-reducing microorganism Desulfovibrio desulfuricans could be incriminated in the process of mercury bio-methylation, it was decided to test this hypothesis on sediments from selected areas of Durban Bay where elevated levels of the bio-hazardous heavy metal had previously been detected. The Environmentek Division of the Council for Scientific and Industrial Research (Durban) is involved in an ongoing chemical assessment of heavy metal contamination (including levels of mercury) in the sediments of this estuary, but nothing is currently understood about the form in which mercury exists or the biological processes that could be determining its fate. The purpose of this project was to attempt to answer some of these questions. The study involved attempting to isolate, identify and quantify microorganisms of the species Desulfovibrio desulfuricans, Escherichia coli and Clostridium perfringens in one hundred and eighty sediment samples taken from three designated sites in the bay. Each sample was additionally analysed for total and methyl mercury and sulfate content, as well as a number of physical parameters. Based on the outcome of the initial survey, it was envisaged that further laboratory experimentation would be conducted to determine whether or not isolates were responsible for the production of the highly toxic organic mercury and whether this process was occurring in situ in the sediments. The findings of this project were contrary to what had been expected. Total mercury concentrations (apart from one instance) did not appear to be appreciably elevated in the areas under study. Similarly, the levels of methyl mercury were fourrd to be either diminished or absent. Numbers of D. desulfuricans were low and not uniformly distributed throughout the sediments. Cl. perfringens was more in evidence, but counts were not perceptibly increased. Sulfate levels were consistently high, indicating significantly impaired rates of sulfate reduction. Difficulty experienced in sub-culturing

2005 ◽  
Vol 71 (8) ◽  
pp. 4610-4618 ◽  
Author(s):  
Naghma Naz ◽  
Hilary K. Young ◽  
Nuzhat Ahmed ◽  
Geoffrey M. Gadd

ABSTRACT Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.


2009 ◽  
Vol 71-73 ◽  
pp. 645-648 ◽  
Author(s):  
K.A. Natarajan

The role of Acidithiobacillus group of bacteria in acid generation and heavy metal dissolution was studied with relevance to some Indian mines. Microorganisms implicated in acid generation such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans were isolated from abandoned mines, waste rocks and tailing dumps. Arsenite oxidizing Thiomonas and Bacillus group of bacteria were isolated and their ability to oxidize As (III) to As (V) established. Mine isolated Sulfate reducing bacteria were used to remove dissolved copper, zinc, iron and arsenic from solutions.


2021 ◽  
Author(s):  
Mohd Usman Khan ◽  
Nachiketa Rai ◽  
Mukesh Kumar Sharma

<p>As contamination in groundwater has been reported from various regions of the Indian subcontinent but no data related to heavy metal contamination of groundwater has been reported for the Bahraich area in the Indo-Gangetic plains. We report the first dataset on arsenic contamination and groundwater hydrogeochemistry, in Bahraich. This includes concentrations of heavy metal such as As, Mn, and Fe, along with major cations (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>and Mg<sup>2+</sup>) and anions (F<sup>-</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and PO<sub>4</sub><sup>3-</sup>), and dissolved organic carbon (DOC), along with various physico-chemical parameters such as EC, pH, and Eh from samples collected during two extensive field campaigns conducted during pre-monsoon, and post-monsoon seasons respectively. The combined use of geochemical modeling and multivariate statistical approaches such as principal component analysis (PCA) and correlation analysis (CA) suggest several processes affecting the geochemistry of groundwater including the lithological characteristics of aquifers and anthropogenic activities.</p><p>The groundwater of the study area predominantly belongs to the Ca-Mg-HCO<sub>3</sub> type hydrochemical facies. HCO<sub>3</sub><sup>−</sup>/Na<sup>+</sup> and Ca<sup>2+</sup>/Na<sup>+</sup> signatures of groundwater indicate the influence of silicate weathering and carbonate dissolution processes with the insignificant role of evaporate dissolution mechanism. As concentration was found to range from 0.6 μg/L to ~100 μg/L with almost 40% of the collected samples exceeding the WHO defined limit of 10 μg/L for drinking water. 70 % of the groundwater samples were found to have very high Fe concentrations exceeding the WHO guideline of 0.3 mg/l in drinking water. Mn concentrations in the groundwater samples were relatively low with only ~10 % of the samples exceeding the WHO defined limit for Mn (400 μg/L). The majority of the groundwater samples were found to be anoxic in nature showing low NO<sub>3</sub><sup>−</sup> & SO<sub>4</sub><sup>2-</sup> concentrations, high Fe & Mn and DOC concentrations, and negative Eh values.</p><p>Results from this study show that the reductive dissolution mechanism of iron oxyhydroxide is the dominant mechanism responsible for arsenic release in groundwater of the region, ruling out any role of sulfide oxidation and alkali desorption.</p><p> </p><p> </p>


1994 ◽  
Vol 353 ◽  
Author(s):  
S. Fukunaga ◽  
H. Yoshikawa ◽  
K. Fujiki ◽  
H. Asano

AbstractThe active range ofDesulfovibrio desulfuricans. a species of sulfate-reducing bacteria, was examined in terms of pH and Eh using a fermenter at controlled pH and Eh. Such research is important because sulfate-reducing bacteria (SRB) are thought to exist underground at depths equal to those of supposed repositories for high-level radioactive wastes and to be capable of inducing corrosion of the metals used in containment vessels.SRB activity was estimated at 35°C, with lactate as an electron donor, at a pH range from 7 to 11 and Eh range from 0 to -380 mV. Activity increased as pH approached neutral and Eh declined. The upper pH limit for activity was between 9.9 and 10.3, at Eh of -360 to -384 mV. The upper Eh limit for activity was between -68 and -3 mV, at pH 7.1. These results show that SRB can be made active at higher pH by decreasing Eh, and that the higher pH levels of 8 to 10 produced by use of the buffer material bentonite does not suppress SRB completely.A chart was obtained showing the active range ofDesulfovibrio desulfuricansin terms of pH and Eh. Such charts can be used to estimate the viability of SRB and other microorganisms when the environmental conditions of a repository are specified.


Author(s):  
Richard Kevorkian ◽  
Sean Callahan ◽  
Rachel Winstead ◽  
Karen G. Lloyd

AbstractUncultured members of the Methanomicrobia called ANME-1 perform the anaerobic oxidation of methane (AOM) through a process that uses much of the methanogenic pathway. It is unknown whether ANME-1 obligately perform AOM, or whether some of them can perform methanogenesis when methanogenesis is exergonic. Most marine sediments lack advective transport of methane, so AOM occurs in the sulfate methane transition zone (SMTZ) where sulfate-reducing bacteria consume hydrogen produced by fermenters, making hydrogenotrophic methanogenesis exergonic in the reverse direction. When sulfate is depleted deeper in the sediments, hydrogen accumulates making hydrogenotrophic methanogenesis exergonic, and methane accumulates in the methane zone (MZ). In White Oak River estuarine sediments, we found that ANME-1 comprised 99.5% of 16S rRNA genes from amplicons and 100% of 16S rRNA genes from metagenomes of the Methanomicrobia in the SMTZ and 99.9% and 98.3%, respectively, in the MZ. Each of the 16 ANME-1 OTUs (97% similarity) had peaks in the SMTZ that coincided with peaks of putative sulfate-reducing bacteria Desulfatiglans sp. and SEEP-SRB1. In the MZ, ANME-1, but no putative sulfate-reducing bacteria or cultured methanogens, increased with depth. Using publicly available data, we found that ANME-1 was the only group expressing methanogenic genes during both net AOM and net methanogenesis in an enrichment. The commonly-held belief that ANME-1 perform AOM is based on the fact that they dominate natural settings and enrichments where net AOM is measured. We found that ANME-1 also dominate natural settings and enrichment where net methanogenesis is measured, so we conclude that ANME-1 perform methane production. Alternating between AOM and methanogenesis, either in a single ANME-1 cell or between different subclades with similar 16S rRNA sequences of ANME-1, may confer a competitive advantage, explaining the predominance of low-energy adapted ANME-1 in methanogenic sediments worldwide.Abstract ImportanceLife may operate differently at very low energy levels. Natural populations of microbes that make methane survive on some of the lowest energy yields of all life. From all available data, we infer that these microbes alternate between methane production and oxidation, depending on which process is energy-yielding in the environment. This means that much of the methane produced naturally in marine sediments occurs through an organism that is also capable of destroying it under different circumstances.


2003 ◽  
Vol 60 (7) ◽  
pp. 888-896 ◽  
Author(s):  
Martin Kainz ◽  
Marc Lucotte ◽  
Christopher C Parrish

Relationships between organic matter (OM) compounds and methyl mercury concentrations ([MeHg]) have been examined in littoral and offshore sediments of Lake Lusignan (Québec). The highest [MeHg] were generally found at the sediment–water interface with exceptionally high concentrations at littoral sites (5.8 ± 1.3 ng·g dry weight–1), which were four times more elevated than at offshore sites (1.6 ± 0.77 ng·g dry weight–1). Source-specific fatty acid (FA) biomarkers identified that littoral sediments contained more than twice as much terrestrial and bacterial OM compounds than offshore sediments, whereas the amount of labile algal OM was three times higher at littoral sites. Results indicate that [MeHg] were higher in the presence of labile OM substrates, and the amount of terrestrial OM compounds could not predict [MeHg]. Correlations between [MeHg] and FA of Desulfovibrio desulfuricans (a sulfate-reducing bacterium producing MeHg) could significantly account for 36% of [MeHg] at offshore sites; however, no significant relationships were found at littoral sites. This study illustrates that the microbial dynamics involved in producing and degrading MeHg in lacustrine sediments are complex and cannot be predicted solely by the quantification of FA biomarkers in D. desulfuricans or by biomarkers in the OM itself.


Sign in / Sign up

Export Citation Format

Share Document