scholarly journals APPLICATION FEATURES OF CONCRETE STRENGTH MONITORING SENSORS

Author(s):  
А.S. Тulebekova ◽  
◽  
Ye.B. Utepov ◽  
Sh.Zh. Zharasov ◽  
◽  
...  

The paper presents an algorithm of application of concrete strength monitoring sensors taking into account such features as a selection of sensor type, selection of concrete mixture calibration method according to regulated requirements, consideration of concrete maturity sensor location, degree of influence of hardening temperature on strength gain based on isotherms construction. This algorithm was reflected in practice, as the wireless sensor for concrete strength monitoring developed within the project was applied according to the selected scheme in real-time.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5857
Author(s):  
Brandy J. Johnson ◽  
Anthony P. Malanoski ◽  
Jeffrey S. Erickson

This review describes an ongoing effort intended to develop wireless sensor networks for real-time monitoring of airborne targets across a broad area. The goal is to apply the spectrophotometric characteristics of porphyrins and metalloporphyrins in a colorimetric array for detection and discrimination of changes in the chemical composition of environmental air samples. The work includes hardware, software, and firmware design as well as development of algorithms for identification of event occurrence and discrimination of targets. Here, we describe the prototype devices and algorithms related to this effort as well as work directed at selection of indicator arrays for use with the system. Finally, we review the field trials completed with the prototype devices and discuss the outlook for further development.


2008 ◽  
Vol 25 (5) ◽  
pp. 656-666 ◽  
Author(s):  
Herman G. J. Smit ◽  
Andreas Volz-Thomas ◽  
Manfred Helten ◽  
Werner Paetz ◽  
Dieter Kley

Abstract A new in-flight calibration (IFC) method is described for the humidity sensor flown routinely since 1994 on the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program’s aircraft. The IFC method corrects the potential drift of the sensor offset at zero relative humidity, which is the critical parameter in determining the uncertainty of the measurements. The sensor offset is determined from the measurements themselves as obtained during periods when the aircraft is flying in the lower stratosphere at or above the hygropause, where the H2O mixing ratio reaches well-defined minimum values of about 5 ppmv and the contribution of atmospheric H2O to the sensor signal is minimal. The selection of stratospheric data is achieved with the help of potential temperature, which can be calculated in situ from measured temperature and pressure. The IFC method is capable of providing humidity measurements in near–real time with an uncertainty of ±8% RH at the surface and ±7% RH in the upper troposphere. For validation, the IFC method was applied to 5 yr of archived raw signals from the MOZAIC aircraft. The resulting humidity data are in good agreement (within 2% RH) with the original MOZAIC data that used monthly pre- and postflight calibrations of the sensor. The standard deviation of the differences varies with altitude between ±4% and ±6% RH, which is comparable to the accuracy of the MOZAIC laboratory calibrations. Compared to MOZAIC operation based on monthly calibrations in the laboratory, the use of IFC will substantially reduce the efforts for maintenance and thus will enable operation of the sensor on a large fleet of in-service aircraft for near-real-time measurements of humidity in the troposphere. Because the IFC method will not work on aircraft that never enter the lower stratosphere, for example, aircraft that fly exclusively regional routes or in the tropics, regular offline calibrations will remain important for such aircraft.


Author(s):  
Palky Mehta ◽  
H. L. Sharma

In the current scenario of Wireless Sensor Network (WSN), power consumption is the major issue associated with nodes in WSN. LEACH technique plays a vital role of clustering in WSN and reduces the energy usage effectively. But LEACH has its own limitation in order to search cluster head nodes which are randomly distributed over the network. In this paper, ERA-NFL- BA algorithm is being proposed for selects the cluster heads in WSN. This algorithm help in selection of cluster heads can freely transform from global search to local search. At the end, a comparison has been done with earlier researcher using protocol ERA-NFL, which clearly shown that proposed Algorithm is best suited and from comparison results that ERA-NFL-BA has given better performance.


2011 ◽  
Vol E94-B (2) ◽  
pp. 569-572
Author(s):  
Soochang PARK ◽  
Euisin LEE ◽  
Juhyun JUNG ◽  
Sang-Ha KIM

2020 ◽  
Author(s):  
Lakshmi Narayana Thalluri ◽  
Jitendra Prasad Ayodhya ◽  
Yuva Raju Chava ◽  
Bhimeswara Anjaneya Prasad Tati

Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

Background: Real Time Wireless Sensor Networks (RT-WSN) have hard real time packet delivery requirements. Due to resource constraints of sensors, these networks need to trade-off energy and latency. Objective: In this paper, a routing protocol for RT-WSN named “SPREAD” has been proposed. The underlying idea is to reserve laxity by assuming tighter packet deadline than actual. This reserved laxity is used when no deadline-meeting next hop is available. Objective: As a result, if due to repeated transmissions, energy of nodes on shortest path is drained out, then time is still left to route the packet dynamically through other path without missing the deadline. Results: Congestion scenarios have been addressed by dynamically assessing 1-hop delays and avoiding traffic on congested paths. Conclusion: Through extensive simulations in Network Simulator NS2, it has been observed that SPREAD algorithm not only significantly reduces miss ratio as compared to other similar protocols but also keeps energy consumption under control. It also shows more resilience towards high data rate and tight deadlines than existing popular protocols.


Author(s):  
Kiran Ahuja ◽  
Brahmjit Singh ◽  
Rajesh Khanna

Background: With the availability of multiple options in wireless network simultaneously, Always Best Connected (ABC) requires dynamic selection of the best network and access technologies. Objective: In this paper, a novel dynamic access network selection algorithm based on the real time is proposed. The available bandwidth (ABW) of each network is required to be estimated to solve the network selection problem. Method: Proposed algorithm estimates available bandwidth by taking averages, peaks, low points and bootstrap approximation for network selection. It monitors real-time internet connection and resolves the selection issue in internet connection. The proposed algorithm is capable of adapting to prevailing network conditions in heterogeneous environment of 2G, 3G and WLAN networks without user intervention. It is implemented in temporal and spatial domains to check its robustness. Estimation error, overhead, estimation time with the varying size of traffic and reliability are used as the performance metrics. Results: Through numerical results, it is shown that the proposed algorithm’s ABW estimation based on bootstrap approximation gives improved performance in terms of estimation error (less than 20%), overhead (varies from 0.03% to 83%) and reliability (approx. 99%) with respect to existing techniques. Conclusion: Our proposed methodology of network selection criterion estimates the available bandwidth by taking averages, peaks, and low points and bootstrap approximation method (standard deviation) for the selection of network in the wireless heterogeneous environment. It monitors real-time internet connection and resolves internet connections selection issue. All the real-time usage and test results demonstrate the productivity and adequacy of available bandwidth estimation with bootstrap approximation as a practical solution for consistent correspondence among heterogeneous wireless networks by precise network selection for multimedia services.


Sign in / Sign up

Export Citation Format

Share Document