Towards a novel bioreactor technology for treating fungicide-rich wastewaters from the fruit packaging industry

2021 ◽  
Vol 1 (1) ◽  
pp. 3-5
Author(s):  
Paraschos Melidis ◽  
Dimitrios Karpouzas ◽  
Spyridon Ntougias

The fruit processing industry is an important economic sector worldwide, whereas a wide range of plant pathogens affects the shelf life of fruits, resulting in great economic losses. Post-harvest fungicides are often applied in the fruit processing industry to address post-harvest infections. However, various fungicides have been reported to exhibit toxicity to aquatic and terrestrial non-target organisms. Thus, effective technological solutions are needed to treat fungicide-containing wastewaters generated by the fruit packaging industry. Regarding biological methods, few approaches have been explored to deplete high-strength fungicide-based wastewaters derived from the post-harvest treatment of fruits. Despite the application of post-harvest fungicides for several decades, we are still missing the implementation of a full-scale biobased system to treat fungicide-rich wastewater generated by the fruit-packaging industry. On the other hand, fixed and fluidized bed bioreactors compared to suspended solids systems result in higher removal efficiencies. Based on the advantages of such bioreactor technology and the recent findings regarding the depuration of post-harvest fungicides in these biosystems, immobilized cell bioreactors appear to be a promising biological approach to treat persistent fungicides present in fruit packaging wastewater. However, bioreactors technology scaling up for the biotreatment of fungicide-rich wastewaters from the fruit packaging industry is challenging. Towards this direction, “Minotaur”, a 3-year research project financed by EU and Greek funds, is on the way to develop a full-scale bioreactor technology for treating fungicide-based wastewaters.

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 554 ◽  
Author(s):  
Efstathia Navrozidou ◽  
Nikolaos Remmas ◽  
Paraschos Melidis ◽  
Dimitrios G. Karpouzas ◽  
George Tsiamis ◽  
...  

Despite that diclofenac has been embodied to the European watch list of priority substances of concern, studies on diclofenac biodegradation are limited and the diversity of diclofenac-degrading microbiota remains unknown. In this work, an immobilized cell biofilter was constructed and operated to evaluate its effectiveness to depurate high strength diclofenac wastewater and to identify the diclofenac-degrading community accommodated in activated sludge by employing high-throughput sequencing techniques. After a two-month adaptation period, biofilter removal efficiencies reached values as high as 97.63 ± 0.62%, whereas utilization of diclofenac in the immobilized cell biofilter led to a drastic pH decrease. Based on Illumina sequencing, the major bacterial taxa identified in the immobilized cell biofilter were members of the species Granulicella pectinivorans and Rhodanobacter terrae, followed by members of the species Castellaniella denitrificans, Parvibaculum lavamentivorans, Bordetella petrii, Bryocella elongata and Rhodopseudomonas palustris. The ability of such taxa to utilize a wide range of carbon sources and to effectively adapt under acidic conditions seemed to be the main parameters, which favored their prevalence in the immobilized cell biofilter. In addition, Wickerhamiella was the predominant fungal taxon in the immobilized cell biofilter, which appears to be actively involved in diclofenac degradation in activated sludge systems.


2018 ◽  
Author(s):  
Thorben Lundsgaard ◽  
Wayne B. Hunter ◽  
Scott Adkins

AbstractViruses that are pathogenic to insect pests can be exploited as biological control agents. Viruses that are pathogenic to beneficial insects and other arthropods, as in honey bees, silk worms, and shrimp, cause millions of dollars of losses to those industries. Current advances in next generation sequencing technologies along with molecular and cellular biology have produced a wealth of information about insect viruses and their potential applications. Leafhoppers cause economic losses as vectors of plant pathogens which significantly reduce the worlds’ food crops. Each year more viruses are discovered primarily through the use of next generation sequencing of the leafhopper hosts. The diversity of viruses from leafhoppers demonstrates a wide range of taxonomic members that includes genomes of DNA or RNA from families like: Reoviridae, Iridoviridae, Dicistroviridae, Iflaviridae, and others yet to be classified. Discussed is a recent viral pathogen isolated from the leafhopperPsammotettix alienus, name Taastrup Virus. Taastrup virus (TV) is a novel virus with a RNA genome, a Filovirus-like morphology, being tentatively placed within theMononegavirales. AdultPsammotettix alienusinfected with TV, showed the highest concentration of virions in salivary glands, consisting of a principal gland (type I-VI-cells) and an accessory gland. Examination of thin sections revealed enveloped particles, about 1300 nm long and 62 nm in diameter, located singly or in paracrystalline arrays in canaliculi of type III- and IV-cells. In gland cells with TV particles in canaliculi, granular masses up to 15 μm in diameter were present in the cytoplasm. These masses are believed to be viroplasms, the sites for viral replication. TV particles were observed at the connection between a canaliculus and the salivary duct system. A TV-like virus with strongly similar morphology was discovered in the ornamental plant,Liriope, near Fort Pierce, Florida, USA. When the virus was inoculated to a leafhopper cell culture, HvWH, made from the glassy-winged sharpshooter,Homalodisca vitripennis(Germar), the cells rapidly degraded with 100% mortality in 48 hours. These two instances are the only reported cases of this newly discovered viral pathogen of leafhoppers.


2021 ◽  
Author(s):  
Hernando José Bolivar-Anillo ◽  
Victoria E. González-Rodríguez ◽  
Giovanna Reyes Almeida ◽  
Inmaculada Izquierdo-Bueno ◽  
Javier Moraga ◽  
...  

The genus Phytophthora with more than 100 described species and 58 officially recognized, phylogenetically distributed in ten clades, are important pathogenic oomycete chromists that cause important diseases in agricultural crops, trees and forests worldwide. This genus is known as \"The Plant Destroyer” which causes great economic losses with costs between 2 and 7 billion dollars per year in agricultural systems and unquantifiable losses in natural ecosystems. The host plants of the genus Phytophthora can vary from a wide range in some species to only one host, however, the host plants of the new species are still being determined and therefore the range continues to expand, that makes control exceedingly difficult. Plant damage can range from alterations in roots, fruits, trunks, stems, foliage and crown to invasive processes in highly susceptible species. Considering the wide range of hosts and organs that can be affected by Phytophthora, the use of endophytic microorganisms for the biocontrol of this phytopathogen can be an alternative to avoid losses of both crops and forests worldwide. Endophytes are microorganisms that live inside plant tissues without causing disease under any circumstances. The fact that endophytic microorganisms are able to colonize an ecological niche similar to that of some plant pathogens qualifies them as potential biocontrol agents. This chapter describes the endophytic bacteria and fungi isolated from different plant species that have shown antagonistic activity against different species of Phytophthora, as well as the metabolites isolated from these microorganisms that have shown fungicide activity and other biocontrol strategies (enzyme production, siderophores, substrate competition, among others) against Phytophthora.


2017 ◽  
Vol 6 (2) ◽  
pp. 198 ◽  
Author(s):  
Ryland Cairns ◽  
Paul Mead

Anaerobic Digestion has gained popularity in recent years due to its significant contribution towards achieving waste management and renewable energy targets. One particular technology that has been widely used in the treatment of high strength organic wastewaters across a wide range of industries is upflow anaerobic sludge blankets (UASBs). A malt ingredients manufacturing factory has successfully applied this technology as a cost effective way to treat their high strength effluent, however unlike other industries there is a lack of research regarding the wastewater characterisation or UASB performance at either lab or full scale. This paper aims to address this gap in knowledge and provide information on both the wastewater composition and on the ability of a full-scale mesophilic UASB to treat it over a period of 638 days. Analysis of the wastewater revealed that the manufacture of malt ingredients produces a high strength effluent, which fits within the realms of previously documented wastewaters despite not sharing a similar characterisation profile. Mesophilic UASB has been show to be an effective and robust technology option for the treatment of this type of wastewater displaying steady operational performance even when conditions were in excess of the design limit. Due to the robust operational performance of the plant the main factor limiting total methane production was shown to be the organic loading rate. 


Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.


Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract SP 700 is a high strength, beta-rich alpha-beta titanium alloy. It was developed with the following attributes: (1) excellent hot- and cold-workability; (2) enhanced hardenability with a wide range of mechanical properties that can be obtained by heat treatment; and (3) superior superplastic behavior at low temperature (around 1050 K). This datasheet provides information on composition, physical properties, microstructure, elasticity, tensile properties, and bend strength. It also includes information on high temperature performance as well as heat treating. Filing Code: TI-107. Producer or source: NKK Corporation.


Alloy Digest ◽  
1970 ◽  
Vol 19 (2) ◽  

Abstract ALLEGHENY ALMAR-362 is an age-hardenable martensitic stainless steel recommended for applications requiring high strength and good corrosion resistance, such as aircraft and missile structures, hydraulic and pneumatic equipment components, and in the chemical processing industry. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-234. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1978 ◽  
Vol 27 (7) ◽  

Abstract ALMAR 300 Alloy is a vacuum-melted ultra-high-strength steel. The annealed structure of this alloy is essentially a carbon-free, iron-nickel martensite (a relatively soft Rockwell C 28) that can be strengthened by cold working and elevated-temperature (900-950 F) age hardening to useful yield strengths as high as 300,000 psi. The unique properties of this alloy make it suitable for a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-349. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1975 ◽  
Vol 24 (5) ◽  

Abstract USS TENELON is a completely austenitic, nickel-free stainless steel with exceptionally high strength which is retained at elevated temperatures. It has excellent corrosion resistance in atmospheric and mild acid exposures and maintains nonmagnetic characteristics even when 60% cold reduced. It also has good stress-rupture and creep properties in the range 1200-1500 F. It has a wide range of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-311. Producer or source: United States Steel Corporation.


Sign in / Sign up

Export Citation Format

Share Document