scholarly journals Megacity ozone air quality under four alternative future scenarios

2012 ◽  
Vol 12 (10) ◽  
pp. 4413-4428 ◽  
Author(s):  
T. M. Butler ◽  
Z. S. Stock ◽  
M. R. Russo ◽  
H. A. C. Denier van der Gon ◽  
M. G. Lawrence

Abstract. The impact of the megacities of the world on global tropospheric ozone, and conversely, the extent to which megacities are influenced by emissions of ozone precursors from outside of the megacities is examined under the four alternative RCP ("Representative Concentration Pathway") emissions scenarios. Despite accounting for about 6% of present-day anthropogenic emissions of ozone precursor species, the contribution of emissions from megacities to global tropospheric ozone is calculated to be 0.84%. By 2100 this contribution falls to between 0.18% and 0.62% depending on the scenario, with the lower value being for the most-polluting of the four future emissions scenarios due to stringent controls on ozone precursor emissions from highly populated areas combined with a stronger tropospheric background ozone field. The higher end of this range is from the least-polluting of the four emissions scenarios, due to lower background tropospheric ozone combined with the use of a simpler downscaling methodology in the construction of the scenario, which results in higher emissions from megacities. Although the absolute impact of megacities on global ozone is small, an important result of this study is that under all future scenarios, future air quality in megacities is expected to be less influenced by local emissions within the cities, but instead more influenced by emission sources outside of the cities, with mixing ratios of background ozone projected to play an increasing role in megacity air quality throughout the 21st century. Assumptions made when downscaling the emissions scenarios onto the grids used in such modelling studies can have a large influence on these results; future generations of emissions scenarios should include spatially explicit representations or urban development suitable for air quality studies using global chemical transport models.

2012 ◽  
Vol 12 (1) ◽  
pp. 129-163 ◽  
Author(s):  
T. M. Butler ◽  
Z. S. Stock ◽  
M. R. Russo ◽  
H. A. C. Denier van der Gon ◽  
M. G. Lawrence

Abstract. The impact of the megacities of the world on global tropospheric ozone, and conversely, the extent to which megacities are influenced by emissios of ozone precursors from outside of the megacities is examined under the four alternative RCP (''Representative Concentration Pathway'') emissions scenarios. Despite accounting for about 6% of present-day anthropogenic emissions of ozone precursor species, the contribution of emissions from megacities to global tropospheric ozone is calculated to be 0.84%. By 2100 this contribution falls to between 0.18 and 0.62% depending on the scenario, with the lower value being for the most-polluting of the four future emissions scenarios due to stringent controls on ozone precursor emissions from highly populated areas combined with a stronger tropospheric background ozone field. The higher end of this range is from the least-polluting of the four emissions scenarios, due lower background tropospheric ozone combined with the use of a different downscaling methodology in the construction of the scenario. Although the absolute impact of megacities on global ozone is small, an important result of this study is that under all future scenarios, future air quality in megacities is expected to be less influenced by local emissions within the cities, but instead more influenced by emission sources outside of the cities. Air quality trends in the megacities of the developing world are projected to be similar to observed trends in developed world megacities over the last few decades. Assumptions made when downscaling the emissions scenarios onto the grids used in such modelling studies can have a large influence on these results. Future work should concentrate on the creation of spatially explicit scenarios of urban development for use in global chemical transport models.


2009 ◽  
Vol 9 (11) ◽  
pp. 3731-3743 ◽  
Author(s):  
M. Mena-Carrasco ◽  
G. R. Carmichael ◽  
J. E. Campbell ◽  
D. Zimmerman ◽  
Y. Tang ◽  
...  

Abstract. The impact of Mexico City (MCMA) emissions is examined by studying its effects on air quality, photochemistry, and on ozone production regimes by combining model products and aircraft observations from the MILAGRO experiment during March 2006. The modeled influence of MCMA emissions to enhancements in surface level NOx, CO, and O3 concentrations (10–30% increase) are confined to distances <200 km, near surface. However, the extent of the influence is significantly larger at higher altitudes. Broader MCMA impacts (some 900 km Northeast of the city) are shown for specific outflow conditions in which enhanced ozone, NOy, and MTBE mixing ratios over the Gulf of Mexico are linked to MCMA by source tagged tracers and sensitivity runs. This study shows that the "footprint" of MCMA on average is fairly local, with exception to reactive nitrogen, which can be transported long range in the form of PAN, acting as a reservoir and source of NOx with important regional ozone formation implications. The simulated effect of MCMA emissions of anthropogenic aerosol on photochemistry showed a maximum regional decrease of 40% in J[NO2→NO+O], and resulting in the reduction of ozone production by 5–10%. Observed ozone production efficiencies are evaluated as a function of distance from MCMA, and by modeled influence from MCMA. These tend to be much lower closer to MCMA, or in those points where modeled contribution from MCMA is large. This research shows that MCMA emissions do effect on regional air quality and photochemistry, both contributing large amounts of ozone and its precursors, but with caveat that aerosol concentrations hinder formation of ozone to its potential due to its reduction in photolysis rates.


2018 ◽  
Author(s):  
Steven Turnock ◽  
Oliver Wild ◽  
Frank Dentener ◽  
Yanko Davila ◽  
Louisa Emmons ◽  
...  

Abstract. This study quantifies future changes in tropospheric ozone (O3) using a simple parameterisation of source-receptor relationships based on simulations from a range of models participating in the Task Force on Hemispheric Transport of Air Pollutants (TF-HTAP) experiments. Surface and tropospheric O3 changes are calculated globally and across 16 regions from perturbations in precursor emissions (NOx, CO, VOCs) and methane (CH4) abundance. A source attribution is provided for each source region along with an estimate of uncertainty based on the spread of the results from the models. Tests against model simulations using HadGEM2-ES confirm that the approaches used within the parameterisation are valid. The O3 response to changes in CH4 abundance is slightly larger in TF-HTAP Phase 2 than in the TF-HTAP Phase 1 assessment (2010) and provides further evidence that controlling CH4 is important for limiting future O3 concentrations. Different treatments of chemistry and meteorology in models remains one of the largest uncertainties in calculating the O3 response to perturbations in CH4 abundance and precursor emissions, particularly over the Middle East and South Asian regions. Emission changes for the future ECLIPSE scenarios and a subset of preliminary Shared Socio-economic Pathways (SSPs) indicate that surface O3 concentrations will increase by 1 to 8 ppbv in 2050 across different regions. Source attribution analysis highlights the growing importance of CH4 in the future under current legislation. A global tropospheric O3 radiative forcing of +0.07 W m−2 from 2010 to 2050 is predicted using the ECLIPSE scenarios and SSPs, based solely on changes in CH4 abundance and tropospheric O3 precursor emissions and neglecting any influence of climate change. Current legislation is shown to be inadequate in limiting the future degradation of surface ozone air quality and enhancement of near-term climate warming. More stringent future emission controls provide a large reduction in both surface O3 concentrations and O3 radiative forcing. The parameterisation provides a simple tool to highlight the different impacts and associated uncertainties of local and hemispheric emission control strategies on both surface air quality and the near-term climate forcing by tropospheric O3.


2010 ◽  
Vol 10 (6) ◽  
pp. 3001-3025 ◽  
Author(s):  
S. Yu ◽  
R. Mathur ◽  
G. Sarwar ◽  
D. Kang ◽  
D. Tong ◽  
...  

Abstract. A critical module of air quality models is the photochemical mechanism. In this study, the impact of the three photochemical mechanisms (CB4, CB05, SAPRC-99) on the Eta-Community Multiscale Air Quality (CMAQ) model's forecast performance for O3, and its related precursors has been assessed over the eastern United States with observations obtained by aircraft (NOAA P-3 and NASA DC-8) flights, ship and two surface networks (AIRNow and AIRMAP) during the 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) study. The results show that overall none of the mechanisms performs systematically better than the others. On the other hand, at the AIRNow surface sites, CB05 has the best performance with the normalized mean bias (NMB) of 3.9%, followed by CB4 (NMB=−5.7%) and SAPRC-99 (NMB=10.6%) for observed O3≥75 ppb, whereas CB4 has the best performance with the least overestimation for observed O3<75 ppb. On the basis of comparisons with aircraft P-3 measurements, there were consistent overestimations of O3, NOz, PAN and NOy and consistent underestimations of CO, HNO3, NO2, NO, SO2 and terpenes for all three mechanisms although the NMB values for each species and mechanisms were different. The results of aircraft DC-8 show that CB05 predicts the H2O2 mixing ratios most closely to the observations (NMB=10.8%), whereas CB4 and SAPRC-99 overestimated (NMB=74.7%) and underestimated (NMB=−25.5%) H2O2 mixing ratios significantly, respectively. For different air mass flows over the Gulf of Maine on the basis of the ship data, the three mechanisms have relatively better performance for O3, isoprene and SO2 for the clean marine or continental flows but relatively better performance for CO, NO2 and NO for southwesterly/westerly offshore flows. The results of the O3-NOz slopes over the ocean indicate that SAPRC-99 has the highest upper limits of the ozone production efficiency (εN) (5.8), followed by CB05 (4.5) and CB4 (4.0) although they are much lower than that inferred from the observation (11.8), being consistent with the fact that on average, SAPRC-99 produces the highest O3, followed by CB05 and CB4, across all O3 mixing ratio ranges


Organization ◽  
2014 ◽  
Vol 21 (3) ◽  
pp. 400-420 ◽  
Author(s):  
Jeff Hearn

The article opens by briefly reviewing studies of sexuality in and around organizations from the 1970s. These studies showed considerable theoretical, empirical and conceptual development, as in the concept of organization sexuality. Building on this, the article’s first task is to analyse alternative future scenarios for organization sexualities, by way of changing intersections of gender, sexuality and organizational forms. Possible gendered future scenarios are outlined based on, first, gender equality/inequality and, second, gender similarity/difference between women, men and further genders: hyper-patriarchy scenario—men and women becoming more divergent; with greater inequality; late capitalist gender scenario—genders becoming more convergent, with greater inequality; bi-polar scenario—men and women becoming more divergent, with greater equality; postgender scenario—genders becoming more convergent, with greater equality. Somewhat similar scenarios for organization sexualities are elaborated in terms of gender/sexual equality and inequality and sexual/gender similarity and difference: heteropatriarchies scenario—greater sexual/gender difference and greater sexual or sexual/gender inequality; late capitalist sexual scenario—greater sexual/gender similarity and greater sexual or gender/sexual inequality; sexual differentiation scenario—greater sexual/gender difference and greater sexual or sexual/gender equality; sexual blurring scenario—greater sexual/gender similarity and greater sexual or sexual/gender equality. The article’s second task is to addresses the impact of globalizations and transnationalizations, specifically information and communication technologies and other socio-technologies, for future scenarios of organization sexualities. The characteristic affordances of ICTs—technological control, virtual reproducibility, conditional communality, unfinished undecidability—are mapped onto the four scenarios above and the implications outlined.


2021 ◽  
Author(s):  
Inês Vieira ◽  
Hans Verbeeck ◽  
Félicien Meunier ◽  
Marc Peaucelle ◽  
Lodewijk Lefevre ◽  
...  

&lt;p&gt;Tropospheric ozone is a greenhouse gas, and high tropospheric ozone levels can directly impact plant growth and human health. In the Congo basin, simulations predict high ozone concentrations, induced by high ozone precursor (VOC and NOx) concentrations and high solar irradiation, which trigger the chemical reactions that form ozone. Additionally, biomass burning activities are widespread on the African continent, playing a crucial role in ozone precursor production. How these potentially high ozone levels impact tropical forest primary productivity remains poorly understood, and field-based ozone monitoring is completely lacking from the Congo basin. This study intends to show preliminary results from the first full year of in situ measurements of ozone concentration in the Congo Basin (i.e., Yangambi, Democratic Republic of the Congo). We show the relationships between meteorological variables (temperature, precipitation, radiation, wind direction and speed), fire occurrence (derived from remote sensing products) and ozone concentrations at a new continuous monitoring station in the heart of the Congo Basin. First results show higher daily mean ozone levels (e.g. 43 ppb registered in January 2020) during dry season months (December-February). We identify a strong diurnal cycle, where minimum values of ozone (almost near zero) are registered during night hours, and maximum values (near 100 ppb) are registered during the daytime. We also verify that around 2.5% of the ozone measurements exceeds a toxicity level (potential for ozone to damage vegetation) of 40 ppb. In the longer term, these measurements should improve the accuracy of future model simulations in the Congo Basin and will be used to assess the impact of ozone on the tropical forest&amp;#8217;s primary productivity.&lt;/p&gt;


2017 ◽  
Vol 200 ◽  
pp. 75-100 ◽  
Author(s):  
T. Sherwen ◽  
M. J. Evans ◽  
R. Sommariva ◽  
L. D. J. Hollis ◽  
S. M. Ball ◽  
...  

Halogens (Cl, Br) have a profound influence on stratospheric ozone (O3). They (Cl, Br and I) have recently also been shown to impact the troposphere, notably by reducing the mixing ratios of O3 and OH. Their potential for impacting regional air-quality is less well understood. We explore the impact of halogens on regional pollutants (focussing on O3) with the European grid of the GEOS-Chem model (0.25° × 0.3125°). It has recently been updated to include a representation of halogen chemistry. We focus on the summer of 2015 during the ICOZA campaign at the Weybourne Atmospheric Observatory on the North Sea coast of the UK. Comparisons between these observations together with those from the UK air-quality network show that the model has some skill in representing the mixing ratios/concentration of pollutants during this period. Although the model has some success in simulating the Weybourne ClNO2 observations, it significantly underestimates ClNO2 observations reported at inland locations. It also underestimates mixing ratios of IO, OIO, I2 and BrO, but this may reflect the coastal nature of these observations. Model simulations, with and without halogens, highlight the processes by which halogens can impact O3. Throughout the domain O3 mixing ratios are reduced by halogens. In northern Europe this is due to a change in the background O3 advected into the region, whereas in southern Europe this is due to local chemistry driven by Mediterranean emissions. The proportion of hourly O3 above 50 nmol mol−1 in Europe is reduced from 46% to 18% by halogens. ClNO2 from N2O5 uptake onto sea-salt leads to increases in O3 mixing ratio, but these are smaller than the decreases caused by the bromine and iodine. 12% of ethane and 16% of acetone within the boundary layer is oxidised by Cl. Aerosol response to halogens is complex with small (∼10%) reductions in PM2.5 in most locations. A lack of observational constraints coupled to large uncertainties in emissions and chemical processing of halogens make these conclusions tentative at best. However, the results here point to the potential for halogen chemistry to influence air quality policy in Europe and other parts of the world.


2015 ◽  
Vol 15 (18) ◽  
pp. 10645-10667 ◽  
Author(s):  
P. D. Hamer ◽  
K. W. Bowman ◽  
D. K. Henze ◽  
J.-L. Attié ◽  
V. Marécal

Abstract. We conduct analyses to assess how characteristics of observations of ozone and its precursors affect air quality forecasting and research. To carry out this investigation, we use a photochemical box model and its adjoint integrated with a Lagrangian 4D-variational data assimilation system. Using this framework in conjunction with pseudo-observations, we perform an ozone precursor source inversion and estimate surface emissions. We then assess the resulting improvement in ozone air quality prediction. We use an analytical model to conduct uncertainty analyses. Using this analytical tool, we address some key questions regarding how the characteristics of observations affect ozone precursor emission inversion and in turn ozone prediction. These questions include what the effect is of choosing which species to observe, of varying amounts of observation noise, of changing the observing frequency and the observation time during the diurnal cycle, and of how these different scenarios interact with different photochemical regimes. In our investigation we use three observed species scenarios: CO and NO2; ozone, CO, and NO2; and HCHO, CO and NO2. The photochemical model was set up to simulate a range of summertime polluted environments spanning NOx-(NO and NO2)-limited to volatile organic compound (VOC)-limited conditions. We find that as the photochemical regime changes, here is a variation in the relative importance of trace gas observations to be able to constrain emission estimates and to improve the subsequent ozone forecasts. For example, adding ozone observations to an NO2 and CO observing system is found to decrease ozone prediction error under NOx- and VOC-limited regimes, and complementing the NO2 and CO system with HCHO observations would improve ozone prediction in the transitional regime and under VOC-limited conditions. We found that scenarios observing ozone and HCHO with a relative observing noise of lower than 33 % were able to achieve ozone prediction errors of lower than 5 ppbv (parts per billion by volume). Further, only observing intervals of 3 h or shorter were able to consistently achieve ozone prediction errors of 5 ppbv or lower across all photochemical regimes. Making observations closer to the prediction period and either in the morning or afternoon rush hour periods made greater improvements for ozone prediction: 0.2–0.3 ppbv for the morning rush hour and from 0.3 to 0.8 ppbv for the afternoon compared to only 0–0.1 ppbv for other times of the day. Finally, we made two complementary analyses that show that our conclusions are insensitive to the assumed diurnal emission cycle and to the choice of which VOC species emission to estimate using our framework. These questions will address how different types of observing platform, e.g. geostationary satellites or ground monitoring networks, could support future air quality research and forecasting.


2020 ◽  
Vol 20 (17) ◽  
pp. 10667-10686
Author(s):  
Martin O. P. Ramacher ◽  
Lin Tang ◽  
Jana Moldanová ◽  
Volker Matthias ◽  
Matthias Karl ◽  
...  

Abstract. Shipping is an important source of air pollutants, from the global to the local scale. Ships emit substantial amounts of sulfur dioxides, nitrogen dioxides, and particulate matter in the vicinity of coasts, threatening the health of the coastal population, especially in harbour cities. Reductions in emissions due to shipping have been targeted by several regulations. Nevertheless, effects of these regulations come into force with temporal delays, global ship traffic is expected to grow in the future, and other land-based anthropogenic emissions might decrease. Thus, it is necessary to investigate combined impacts to identify the impact of shipping activities on air quality, population exposure, and health effects in the future. We investigated the future effect of shipping emissions on air quality and related health effects considering different scenarios of the development of shipping under current regional trends of economic growth and already decided regulations in the Gothenburg urban area in 2040. Additionally, we investigated the impact of a large-scale implementation of shore electricity in the Port of Gothenburg. For this purpose, we established a one-way nested chemistry transport modelling (CTM) system from the global to the urban scale, to calculate pollutant concentrations, population-weighted concentrations, and health effects related to NO2, PM2.5, and O3. The simulated concentrations of NO2 and PM2.5 in future scenarios for the year 2040 are in general very low with up to 4 ppb for NO2 and up to 3.5 µg m−3 PM2.5 in the urban areas which are not close to the port area. From 2012 the simulated overall exposure to PM2.5 decreased by approximately 30 % in simulated future scenarios; for NO2 the decrease was over 60 %. The simulated concentrations of O3 increased from the year 2012 to 2040 by about 20 %. In general, the contributions of local shipping emissions in 2040 focus on the harbour area but to some extent also influence the rest of the city domain. The simulated impact of onshore electricity implementation for shipping in 2040 shows reductions for NO2 in the port of up to 30 %, while increasing O3 of up to 3 %. Implementation of onshore electricity for ships at berth leads to additional local reduction potentials of up to 3 % for PM2.5 and 12 % for SO2 in the port area. All future scenarios show substantial decreases in population-weighted exposure and health-effect impacts.


2013 ◽  
Vol 13 (4) ◽  
pp. 10157-10192 ◽  
Author(s):  
E. L. Yates ◽  
L. T. Iraci ◽  
M. C. Roby ◽  
R. B. Pierce ◽  
M. S. Johnson ◽  
...  

Abstract. Stratosphere-to-troposphere transport (STT) results in air masses of stratospheric origin intruding into the free troposphere. Once in the free troposphere, O3-rich stratospheric air can be transported and mixed with tropospheric air masses, contributing to the tropospheric O3 budget. Evidence of STT can be identified based on the differences in the trace gas composition of the two regions. Because ozone (O3) is present in such large quantities in the stratosphere compared to the troposphere, it is frequently used as a tracer for STT events. This work reports on airborne in situ measurements of O3 and other trace gases during two STT events observed over California, USA. The first, on 14 May 2012, was associated with a cut-off low, and the second, on 5 June 2012, occurred during a post-trough, building ridge event. In each STT event, airborne measurements identified high O3 within a stratospheric intrusion which was observed as low as 3 km above sea level. During both events the stratospheric air mass was characterized by elevated O3 mixing ratios and reduced carbon dioxide (CO2) and water vapor. The reproducible observation of reduced CO2 within the stratospheric air mass supports the use of non-conventional tracers as an additional method for detecting STT. A detailed meteorological analysis of each STT event is presented and observations are interpreted with the Realtime Air Quality Modeling System (RAQMS). The implications of the two STT events are discussed in terms of the impact on the total tropospheric O3 budget and the impact on air quality and policy-making.


Sign in / Sign up

Export Citation Format

Share Document