scholarly journals Impact of wildfires on particulate matter in the Euro-Mediterranean in 2007: sensitivity to some parameterizations of emissions in air quality models

2019 ◽  
Vol 19 (2) ◽  
pp. 785-812 ◽  
Author(s):  
Marwa Majdi ◽  
Solene Turquety ◽  
Karine Sartelet ◽  
Carole Legorgeu ◽  
Laurent Menut ◽  
...  

Abstract. This study examines the uncertainties on air quality modeling associated with the integration of wildfire emissions in chemistry-transport models (CTMs). To do so, aerosol concentrations during the summer of 2007, which was marked by severe fire episodes in the Euro-Mediterranean region especially in the Balkans (20–31 July, 24–30 August 2007) and Greece (24–30 August 2007), are analyzed. Through comparisons to observations from surface networks and satellite remote sensing, we evaluate the abilities of two CTMs, Polyphemus/Polair3D and CHIMERE, to simulate the impact of fires on the regional particulate matter (PM) concentrations and optical properties. During the two main fire events, fire emissions may contribute up to 90 % of surface PM2.5 concentrations in the fire regions (Balkans and Greece), with a significant regional impact associated with long-range transport. Good general performances of the models and a clear improvement of PM2.5 and aerosol optical depth (AOD) are shown when fires are taken into account in the models with high correlation coefficients. Two sources of uncertainties are specifically analyzed in terms of surface PM2.5 concentrations and AOD using sensitivity simulations: secondary organic aerosol (SOA) formation from intermediate and semi-volatile organic compounds (I/S-VOCs) and emissions' injection heights. The analysis highlights that surface PM2.5 concentrations are highly sensitive to injection heights (with a sensitivity that can be as high as 50 % compared to the sensitivity to I/S-VOC emissions which is lower than 30 %). However, AOD which is vertically integrated is less sensitive to the injection heights (mostly below 20 %) but highly sensitive to I/S-VOC emissions (with sensitivity that can be as high as 40 %). The maximum statistical dispersion, which quantifies uncertainties related to fire emission modeling, is up to 75 % for PM2.5 in the Balkans and Greece, and varies between 36 % and 45 % for AOD above fire regions. The simulated number of daily exceedance of World Health Organization (WHO) recommendations for PM2.5 over the considered region reaches 30 days in regions affected by fires and ∼10 days in fire plumes, which is slightly underestimated compared to available observations. The maximum statistical dispersion (σ) on this indicator is also large (with σ reaching 15 days), showing the need for better understanding of the transport and evolution of fire plumes in addition to fire emissions.

2018 ◽  
Author(s):  
Marwa Majdi ◽  
Solene Turquety ◽  
Karine Sartelet ◽  
Carole Legorgeu ◽  
Laurent Menut ◽  
...  

Abstract. This study examines the uncertainties on air quality modeling associated with the integration of wildfire emissions in chemistry-transport models (CTMs). To do so, aerosol concentrations during the summer 2007, which was marked by severe fire episodes in the Euro-Mediterranean region especially in Balkan (20–31 July 2007, 24–30 August 2007) and Greece (24–30 August 2007), are analysed. Through comparisons to observations from surface networks and satellite remote sensing, we evaluate the abilities of two CTMs, Polyphemus/Polair3D and CHIMERE, to simulate the impact of fires on the regional particulate matter (PM) concentrations and optical properties. During the two main fire events, fire emissions may contribute up to 90 % of surface PM2.5 concentrations, with a significant regional impact associated with long-range transport. Good general performances of the models and a clear improvement of PM2.5 and aerosol optical depth (AOD) are shown when fires are taken into account in the models with high correlation coefficients. Two sources of uncertainties are specifically analysed in terms of surface PM concentrations and AOD using sensitivity simulations: secondary organic aerosol (SOA) formation from intermediate and semi-volatile organic compounds (I/S-VOCs) and emissions' injection heights. The analysis highlights that surface PM2.5 concentrations are highly sensitive to injection heights (with a sensitivity that can be as high as 50 % compared to the sensitivity for I/S-VOCs emissions which is lower than 30 %). However, AOD which is vertically integrated is less sensitive to the injection heights (mostly below 20 %), but highly sensitive to I/S-VOCs emissions (with sensitivity that can be as high as 40 %). The maximum dispersion, which quantifies uncertainties related to fire emissions modeling, is up to 75 % for PM2.5 in Balkan and Greece, and varies between 36 and 45 % for AOD above fire regions. The simulated number of daily exceedance of World Health Organization (WHO) recommendations for PM2.5 over the considered region reaches 30 days in regions affected by fires and ∼ 10 days in fire plumes which is slightly underestimated compared to available observations. The maximum dispersion (σ) on this indicator is also large (with σ reaching 15 days), showing the need for better understanding of the transport and evolution of fire plumes in addition to fire emissions.


2018 ◽  
Vol 27 (10) ◽  
pp. 684 ◽  
Author(s):  
Joseph L. Wilkins ◽  
George Pouliot ◽  
Kristen Foley ◽  
Wyat Appel ◽  
Thomas Pierce

Wildland fire emissions are routinely estimated in the US Environmental Protection Agency’s National Emissions Inventory, specifically for fine particulate matter (PM2.5) and precursors to ozone (O3); however, there is a large amount of uncertainty in this sector. We employ a brute-force zero-out sensitivity method to estimate the impact of wildland fire emissions on air quality across the contiguous US using the Community Multiscale Air Quality (CMAQ) modelling system. These simulations are designed to assess the importance of wildland fire emissions on CMAQ model performance and are not intended for regulatory assessments. CMAQ ver. 5.0.1 estimated that fires contributed 11% to the mean PM2.5 and less than 1% to the mean O3 concentrations during 2008–2012. Adding fires to CMAQ increases the number of ‘grid-cell days’ with PM2.5 above 35 µg m−3 by a factor of 4 and the number of grid-cell days with maximum daily 8-h average O3 above 70 ppb by 14%. Although CMAQ simulations of specific fires have improved with the latest model version (e.g. for the 2008 California wildfire episode, the correlation r = 0.82 with CMAQ ver. 5.0.1 v. r = 0.68 for CMAQ ver. 4.7.1), the model still exhibits a low bias at higher observed concentrations and a high bias at lower observed concentrations. Given the large impact of wildland fire emissions on simulated concentrations of elevated PM2.5 and O3, improvements are recommended on how these emissions are characterised and distributed vertically in the model.


Author(s):  
Nilüfer Aykaç ◽  
Pınar Pazarlı Bostan ◽  
Sabri Serhan Olcay ◽  
Berker Öztürk

INTRODUCTION: Particulate matter, sulfur dioxide, ozone, and nitrogen oxide compounds are the main air pollutants. The purpose of this research is to analyze the five-year air quality of Istanbul and examine the effect of movement restrictions due to the COVID-19 pandemic on pollutants. METHODS: The public data of the National Air Quality Observation Network has been utilized. The research has been conducted based on the five-year daily averages of PM10, NO2, and NOx pollutants for Istanbul between 2016 - 2020. The data of stations which measured for 75% and more throughout the year has been used. The effect of lockdowns enforced due to COVID-19 was revealed by comparing data of pollutants from April and May of 2020 to the same period in 2019. RESULTS: There were 12 stations between 2016 – 2018, and 39 stations in 2019 and 2020 which measured particulate matter and nitrogen oxide compounds. Only 9 stations reached the standard of measuring pollution for 75% and more throughout the year. The PM10, NO2, and NOx levels measured by all the 9 stations between 2016 - 2020 are above the limit values set by the World Health Organization (WHO). The lockdowns in 2020 have not been helping improvements in air pollution issue. However, there have been regressions of 33.4%, 59.6%, and 52.6% in the overall average particulate matter, nitrogen oxide, and nitrogen dioxide concentrations during the lockdowns between 23-26 of April, 1-3 of May, and 23-26 of May, respectively. DISCUSSION AND CONCLUSION: The air pollution issue in Istanbul has not improved in a meaningful and significant manner for the last five years. There is a significant deficiency in measuring traffic pollution. It has been found that two days long lockdowns and physical movement restrictions due to COVID-19 have significantly contributed to a significant regression in the overall concentration of air pollutants.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2020 ◽  
Vol 237 ◽  
pp. 03012
Author(s):  
Christoph Senff ◽  
Andrew Langford ◽  
Raul Alvarez ◽  
Tim Bonin ◽  
Alan Brewer ◽  
...  

Recently, two air quality campaigns were conducted in the southwestern United States to study the impact of transported ozone, stratospheric intrusions, and fire emissions on ground-level ozone concentrations. The California Baseline Ozone Transport Study (CABOTS) took place in May – August 2016 covering the central California coast and San Joaquin Valley, and the Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS) was conducted in the greater Las Vegas, Nevada area in May – June 2017. During these studies, nearly 1000 hours of ozone and aerosol profile data were collected with the NOAA TOPAZ lidar. A Doppler wind lidar and a radar wind profiler provided continuous observations of atmospheric turbulence, horizontal winds, and mixed layer height. These measurements allowed us to directly observe the degree to which ozone transport layers aloft were entrained into the boundary layer and to quantify the resulting impact on surface ozone levels. Mixed layer heights in the San Joaquin Valley during CABOTS were generally below 1 km above ground level (AGL), while boundary layer heights in Las Vegas during FAST-LVOS routinely exceeded 3 km AGL and occasionally reached up to 4.5 km AGL. Consequently, boundary layer entrainment was more often observed during FAST-LVOS, while most elevated ozone layers passed untapped over the San Joaquin Valley during CABOTS.


Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


2016 ◽  
Vol 16 (5) ◽  
pp. 3485-3497 ◽  
Author(s):  
Marcella Busilacchio ◽  
Piero Di Carlo ◽  
Eleonora Aruffo ◽  
Fabio Biancofiore ◽  
Cesare Dari Salisburgo ◽  
...  

Abstract. The observations collected during the BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign in summer 2011 over Canada are analysed to study the impact of forest fire emissions on the formation of ozone (O3) and total peroxy nitrates ∑PNs, ∑ROONO2). The suite of measurements on board the BAe-146 aircraft, deployed in this campaign, allows us to calculate the production of O3 and of  ∑PNs, a long-lived NOx reservoir whose concentration is supposed to be impacted by biomass burning emissions. In fire plumes, profiles of carbon monoxide (CO), which is a well-established tracer of pyrogenic emission, show concentration enhancements that are in strong correspondence with a significant increase of concentrations of ∑PNs, whereas minimal increase of the concentrations of O3 and NO2 is observed. The ∑PN and O3 productions have been calculated using the rate constants of the first- and second-order reactions of volatile organic compound (VOC) oxidation. The ∑PN and O3 productions have also been quantified by 0-D model simulation based on the Master Chemical Mechanism. Both methods show that in fire plumes the average production of ∑PNs and O3 are greater than in the background plumes, but the increase of ∑PN production is more pronounced than the O3 production. The average ∑PN production in fire plumes is from 7 to 12 times greater than in the background, whereas the average O3 production in fire plumes is from 2 to 5 times greater than in the background. These results suggest that, at least for boreal forest fires and for the measurements recorded during the BORTAS campaign, fire emissions impact both the oxidized NOy and O3,  but (1 ∑PN production is amplified significantly more than O3 production and (2) in the forest fire plumes the ratio between the O3 production and the ∑PN production is lower than the ratio evaluated in the background air masses, thus confirming that the role played by the ∑PNs produced during biomass burning is significant in the O3 budget. The implication of these observations is that fire emissions in some cases, for example boreal forest fires and in the conditions reported here, may influence more long-lived precursors of O3 than short-lived pollutants, which in turn can be transported and eventually diluted in a wide area.


2016 ◽  
Author(s):  
Yu Fu ◽  
Amos P. K. Tai ◽  
Hong Liao

Abstract. To examine the effects of changes in climate, land cover and land use (LCLU), and anthropogenic emissions on fine particulate matter (PM2.5) between the 5-year periods 1981–1985 and 2007–2011 in East Asia, we perform a series of simulations using a global chemical transport model (GEOS-Chem) driven by assimilated meteorological data and a suite of land cover and land use data. Our results indicate that climate change alone could lead to a decrease in wintertime PM2.5 concentration by 4.0–12.0 μg m−3 in northern China, but an increase in summertime PM2.5 by 6.0–8.0 μg m−3 in those regions. These changes are attributable to the changing chemistry and transport of all PM2.5 components driven by long-term trends in temperature, wind speed and mixing depth. The concentration of secondary organic aerosol (SOA) is simulated to increase by 0.2–0.8 μg m−3 in both summer and winter in most regions of East Asia due to climate change alone, mostly reflecting higher biogenic volatile organic compound (VOC) emissions under warming. The impacts of LCLU change alone on PM2.5 (−2.1 to +1.3 μg m−3) are smaller than that of climate change, but among the various components the sensitivity of SOA and thus organic carbon to LCLU change (−0.4 to +1.2 μg m−3) is quite significant especially in summer, which is driven mostly by changes in biogenic VOC emissions following cropland expansion and changing vegetation density. The combined impacts show that while the effect of climate change on PM2.5 air quality is more pronounced, LCLU change could offset part of the climate effect in some regions but exacerbate it in others. As a result of both climate and LCLU changes combined, PM2.5 levels are estimated to change by −12.0 to +12.0 μg m−3 across East Asia between the two periods. Changes in anthropogenic emissions remain the largest contributor to deteriorating PM2.5 air quality in East Asia during the study period, but climate and LCLU changes could lead to a substantial modification of PM2.5 levels.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3876 ◽  
Author(s):  
Zhe Liu ◽  
Xueli Chen ◽  
Jinyang Cai ◽  
Tomas Baležentis ◽  
Yue Li

Air pollution has become an increasingly serious environmental problem in China. Especially in winter, the air pollution in northern China becomes even worse due to winter heating. The “coal to gas” policy, which uses natural gas to replace coal in the heating system in winter, was implemented in Beijing in the year 2013. However, the effects of this policy reform have not been examined. Using a panel dataset of 16 districts in Beijing, this paper employs a first difference model to examine the impact of the “coal to gas” policy on air quality. Strong evidence shows that the “coal to gas” policy has significantly improved the air quality in Beijing. On average, the “coal to gas” policy reduced sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter smaller than 10 µm (PM10), particulate matter smaller than 2.5 µm (PM2.5) and carbon monoxide (CO) by 12.08%, 4.89%, 13.07%, 11.94% and 11.10% per year, respectively. We find that the “coal to gas” policy is more effective in areas with less energy use efficiency. The finding of this paper suggests that the government should continue to implement the “coal to gas” policy, so as to alleviate the air pollution in Beijing, China.


Sign in / Sign up

Export Citation Format

Share Document