scholarly journals Challenge of modelling GLORIA observations of UT/LMS trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models

2021 ◽  
Author(s):  
Florian Haenel ◽  
Wolfgang Woiwode ◽  
Jennifer Buchmüller ◽  
Felix Friedl-Vallon ◽  
Michael Höpfner ◽  
...  

Abstract. Water vapour and ozone are important for the thermal and radiative balance of the upper troposphere (UT) and lowermost stratosphere (LMS). Both species are modulated by transport processes. Chemical and microphysical processes affect them differently. Thus, representing the different processes and their interactions is a challenging task for dynamical cores, chemical modules and microphysical parameterisations of state-of-the-art atmospheric model components. To test and improve the models, high resolution measurements of the UT/LMS are required. Here, we use measurements taken in a challenging case study by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) instrument on HALO. The German research aircraft HALO (High Altitude and LOng range research aircraft) performed a research flight on 26 February 2016, which covered deeply subsided air masses of the aged 2015/16 Arctic vortex, high-latitude LMS air masses, a highly textured troposphere-to-stratosphere exchange mixing region, and high-altitude cirrus clouds. Therefore, it provides a multifaceted case study for comparing GLORIA observations with state-of-the-art atmospheric model simulations in a complex UT/LMS region at a late stage of the Arctic winter 2015/16. Using GLORIA observations in this manifold scenario, we test the ability of the numerical weather prediction (NWP)-model ICON (ICOsahedral Nonhydrostatic) with the extension ART (Aerosols and Reactive Trace gases) and the chemistry-climate model (CCM) EMAC (ECHAM5/MESSy Atmospheric Chemistry) to model the UT/LMS composition of water vapour (H2O), ozone (O3), nitric acid (HNO3) and clouds. Within the scales resolved by the respective model, we find good overall agreement of both models with GLORIA. The applied high-resolution ICON-ART setup involving a R2B7 nest (local grid refinement with a horizontal resolution of about 20 km), covering the HALO flight region, reproduces mesoscale dynamical structures well. An observed troposphere-to-stratosphere exchange connected to an occluded Icelandic low is clearly reproduced by the model. Given the lower resolution (T106) of the nudged simulation of the EMAC model, we find that this model also reproduces these features well. Overall, trace gas mixing ratios simulated by both models are in a realistic range, and major cloud systems observed by GLORIA are mostly reproduced. However, we find both models to be affected by a well-known systematic moist-bias in the LMS. Further biases are diagnosed in the ICON-ART O3, EMAC H2O and EMAC HNO3 distributions. Finally, we use sensitivity simulations to investigate (i) short-term cirrus cloud impacts on the H2O distribution (ICON-ART), (ii) the overall impact of polar winter chemistry and microphysical processing on O3 and HNO3 (ICON-ART/EMAC), (iii) the impact of the model resolution on simulated parameters (EMAC), and (iv) consequences of scavenging processes by cloud particles (EMAC). We find that changing of the horizontal model resolution results in notable systematic changes for all species in the LMS, while scavenging processes play only a role in case of HNO3. We need to understand the representativeness of our results. However, this is a unique opportunity to characterise model biases that potentially affect forecasts and projection (adversely), and to discover deficits and define paths for further model improvements.

2006 ◽  
Vol 6 (3) ◽  
pp. 3709-3756 ◽  
Author(s):  
C. Geels ◽  
M. Gloor ◽  
P. Ciais ◽  
P. Bousquet ◽  
P. Peylin ◽  
...  

Abstract. The CO2 source and sink distribution across Europe can be estimated in principle through inverse methods by combining CO2 observations and atmospheric transport models. Uncertainties of such estimates are mainly due to insufficient spatiotemporal coverage of CO2 observations and biases of the models. In order to assess the biases related to the use of different models the CO2 concentration field over Europe has been simulated with five different Eulerian atmospheric transport models as part of the EU-funded AEROCARB project, which has the main goal to estimate the carbon balance of Europe. In contrast to previous comparisons, here both global coarse-resolution and regional higher-resolution models are included. Continuous CO2 observations from continental, coastal and mountain in-situ atmospheric stations as well as flask samples sampled on aircrafts are used to evaluate the models' ability to capture the spatiotemporal variability and distribution of lower troposphere CO2 across Europe. 14CO2 is used in addition to evaluate separately fossil fuel signal predictions. The simulated concentrations show a large range of variation, with up to ~10 ppm higher surface concentrations over Western and Central Europe in the regional models with highest (mesoscale) spatial resolution. The simulation – data comparison reveals that generally high-resolution models are more successful than coarse models in capturing the amplitude and phasing of the observed short-term variability. At high-altitude stations the magnitude of the differences between observations and models and in between models is less pronounced, but the timing of the diurnal cycle is not well captured by the models. The data comparisons show also that the timing of the observed variability on hourly to daily time scales at low-altitude stations is generally well captured by all models. However, the amplitude of the variability tends to be underestimated. While daytime values are quite well predicted, nighttime values are generally underpredicted. This is a reflection of the different mixing regimes during day and night combined with different vertical resolution between models. In line with this finding, the agreement among models is increased when sampling in the afternoon hours only and when sampling the mixed portion of the PBL, which amounts to sampling at a few hundred meters above ground. Main recommendations resulting from the study for constraining land carbon sources and sinks using high-resolution concentration data and state-of-the art transport models are therefore: 1) low altitude stations are preferable over high altitude stations as these locations are difficult to represent in state-of-the art models, 2) at low altitude stations only afternoon values can be represented sufficiently well to be used to constrain large-scale sources and sinks in combination with transport models, 3) even when using only afternoon values it is clear that data sampled several hundred meters above ground can be represented substantially more robust in models than surface station records, and finally 4) traditional large scale transport models seem not sufficient to resolve CO2 distributions over regions of the size of for example Spain and thus seem too coarse for interpretation of continental data.


2014 ◽  
Vol 14 (2) ◽  
pp. 255-266 ◽  
Author(s):  
F. Yan ◽  
R. A. E. Fosbury ◽  
M. G. Petr-Gotzens ◽  
G. Zhao ◽  
W. Wang ◽  
...  

AbstractWith the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterizing their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high-resolution and high signal-to-noise ratio (SNR) transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2 · O2, NO2 and H2O are detected, and their column densities are measured and compared with the satellites data. The visible Chappuis band of ozone produces the most prominent absorption feature, which suggests that ozone is a promising molecule for the future exo-Earth characterization. Due to the high resolution and high SNR of our spectrum, several novel details of the Earth atmosphere's transmission spectrum are presented. The individual O2 lines are resolved and O2 isotopes are clearly detected. Our new observations do not confirm the absorption features of Ca II or Na I which have been reported in previous lunar eclipse observations. However, features in these and some other strong Fraunhofer line positions do occur in the observed spectrum. We propose that these are due to a Raman-scattered component in the forward-scattered sunlight appearing in the lunar umbral spectrum. Water vapour absorption is found to be rather weak in our spectrum because the atmosphere we probed is relatively dry, which prompts us to discuss the detectability of water vapour in Earth-like exoplanet atmospheres.


2006 ◽  
Vol 6 (12) ◽  
pp. 5475-5493 ◽  
Author(s):  
H. Tost ◽  
P. Jöckel ◽  
J. Lelieveld

Abstract. In global models of the atmosphere convection is parameterised, since the typical scale of this process is smaller than the model resolution. Here we address some of the uncertainties arising from the selection of different algorithms to simulate this process. Four different parameterisations for atmospheric convection, all used in state-of-the-art models, are implemented in the model system ECHAM5/MESSy for a consistent inter-comparison and evaluation against observations. Relatively large differences are found in the simulated precipitation patterns, whereas simulated water vapour columns distributions are quite similar and close to observations. The effects on the hydrological cycle and on the simulated meteorological conditions are discussed.


2006 ◽  
Vol 6 (5) ◽  
pp. 9213-9257 ◽  
Author(s):  
H. Tost ◽  
P. Jöckel ◽  
J. Lelieveld

Abstract. In global models of the atmosphere convection is parameterised, since the typical scale of this process is smaller than the model resolution. Here we address some of the uncertainties arising from the selection of different algorithms to simulate this process. Four different parameterisations for atmospheric convection, all used in state-of-the-art models, are implemented in the model system ECHAM5/MESSy for a consistent inter-comparison and evaluation against observations. Relatively large differences are found in the simulated precipitation patterns, whereas simulated water vapour columns distributions are quite similar and close to observations. The effects on the hydrological cycle and on the simulated meteorological conditions are discussed.


2011 ◽  
Vol 4 (6) ◽  
pp. 6915-6967 ◽  
Author(s):  
J. Ungermann ◽  
C. Kalicinsky ◽  
F. Olschewski ◽  
P. Knieling ◽  
L. Hoffmann ◽  
...  

Abstract. The Cryogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers (CRISTA-NF), an airborne infrared limb-sounder, was operated aboard the high-flying Russian research aircraft M55-Geophysica during the Arctic RECONCILE campaign from January to March 2011. This paper describes the calibration process of the instrument and the employed retrieval algorithm and then proceeds to present retrieved trace gas mixing ratio cross-sections for one specific flight of this campaign. We are able to resolve the uppermost troposphere/lower stratosphere for several trace gas species for several kilometres below the flight altitude (16 to 19 km) with an unprecedented vertical resolution of 400 to 500 m for the limb-sounding technique. The observations are also characterised by a rather high horizontal sampling along the flight track that provides a full vertical profile every ≈15 km. Assembling the vertical trace gas profiles derived from CRISTA-NF measurements to cross-sections depicts filaments of vortex and extra-vortex air masses in the vicinity of the polar vortex. During this campaign, the M55-Geophysica carried further instruments, which allows for a validation of trace gas mixing ratios derived from CRISTA-NF against measurements by the in situ instruments HAGAR and FOZAN and observations by MIPAS-STR. This validation suggests that the retrieved trace gas mixing ratios are both qualitatively and quantitatively reliable.


Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Sign in / Sign up

Export Citation Format

Share Document