scholarly journals Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes

2021 ◽  
Vol 21 (17) ◽  
pp. 13077-13098
Author(s):  
Jiajue Chai ◽  
Jack E. Dibb ◽  
Bruce E. Anderson ◽  
Claire Bekker ◽  
Danielle E. Blum ◽  
...  

Abstract. Nitrous acid (HONO) is an important precursor to hydroxyl radical (OH) that determines atmospheric oxidative capacity and thus impacts climate and air quality. Wildfire is not only a major direct source of HONO, it also results in highly polluted conditions that favor the heterogeneous formation of HONO from nitrogen oxides (NOx= NO + NO2) and nitrate on both ground and particle surfaces. However, these processes remain poorly constrained. To quantitatively constrain the HONO budget under various fire and/or smoke conditions, we combine a unique dataset of field concentrations and isotopic ratios (15N / 14N and 18O / 16O) of NOx and HONO with an isotopic box model. Here we report the first isotopic evidence of secondary HONO production in near-ground wildfire plumes (over a sample integration time of hours) and the subsequent quantification of the relative importance of each pathway to total HONO production. Most importantly, our results reveal that nitrate photolysis plays a minor role (<5 %) in HONO formation in daytime aged smoke, while NO2-to-HONO heterogeneous conversion contributes 85 %–95 % to total HONO production, followed by OH + NO (5 %–15 %). At nighttime, heterogeneous reduction of NO2 catalyzed by redox active species (e.g., iron oxide and/or quinone) is essential (≥ 75 %) for HONO production in addition to surface NO2 hydrolysis. Additionally, the 18O / 16O of HONO is used for the first time to constrain the NO-to-NO2 oxidation branching ratio between ozone and peroxy radicals. Our approach provides a new and critical way to mechanistically constrain atmospheric chemistry and/or air quality models on a diurnal timescale.

2021 ◽  
Author(s):  
Jiajue Chai ◽  
Jack E. Dibb ◽  
Bruce E. Anderson ◽  
Claire Bekker ◽  
Danielle E. Blum ◽  
...  

Abstract. Nitrous acid (HONO) is an important precursor to hydroxyl radical (OH) that determines atmospheric oxidative capacity and thus impacts climate and air quality. Wildfire is not only a major direct source of HONO, but it also results in highly polluted conditions that favour heterogeneous formation of HONO from nitrogen oxides (NOx = NO + NO2) and nitrate on both ground and particle surfaces. However, these processes remain poorly constrained. To quantitatively constrain the HONO budget under various fire/smoke conditions, we combine a unique dataset of field concentrations and isotopic ratios (15N/14N and 18O/16O) of NOx and HONO, with an isotopic box model. Here we report the first isotopic evidence of secondary HONO production in near-ground wildfire plumes, and the subsequent quantification of relative importance of each pathway to total HONO production. Most importantly, our results reveal that nitrate photolysis plays a minor role (< 5 %) in HONO formation in daytime aged smoke, while photo-enhanced NO2-to-HONO heterogeneous conversion contributes 85–95 % to total HONO production, followed by OH+NO (5–15 %). In nighttime, heterogeneous reduction of NO2 catalysed by redox active species (e.g., iron oxide and/or quinone) is essential (≥ 75 %) for HONO production in addition to surface NO2 hydrolysis. Additionally, the 18O/16O of HONO is used for the first time to constrain the NO-to-NO2 oxidation branching ratio between ozone and peroxy radicals. Our approach provides a new and critical way to mechanistically constrain atmospheric chemistry/air quality models.


2009 ◽  
Vol 9 (3) ◽  
pp. 13629-13653 ◽  
Author(s):  
T. Karl ◽  
A. Guenther ◽  
A. Turnipseed ◽  
P. Artaxo ◽  
S. Martin

Abstract. Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e.g. isoprene) leads to the formation of oxygenated VOCs (OVOCs). The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH) and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian aerosol characterization experiment (AMAZE-08) we show that the production of certain OVOCs (e.g. hydroxyacetone) from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. A recently suggested novel pathway for isoprene peroxy radicals could explain the observed discrepancy and reconcile the rapid formation of these VOCs. Furthermore, if generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in substantial underestimates of modelled OH reactivity that could explain a major fraction of the missing OH sink over forests which has previously been attributed to a missing source of primary biogenic VOCs.


2009 ◽  
Vol 9 (20) ◽  
pp. 7753-7767 ◽  
Author(s):  
T. Karl ◽  
A. Guenther ◽  
A. Turnipseed ◽  
G. Tyndall ◽  
P. Artaxo ◽  
...  

Abstract. Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e.g. isoprene) leads to the formation of oxygenated VOCs (OVOCs). The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH) and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian Aerosol Characterization Experiment (AMAZE-08) we show that the production of certain OVOCs (e.g. hydroxyacetone) from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. Recently reported fast secondary production could explain 50% of the observed discrepancy with the remaining part possibly produced via a novel primary production channel, which has been proposed theoretically. The observations of OVOCs are also used to test a recently proposed HOx recycling mechanism via degradation of isoprene peroxy radicals. If generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in uncertainties of modelled OH reactivity, potentially explaining a fraction of the missing OH sink over forests which has previously been largely attributed to a missing source of primary biogenic VOCs.


2012 ◽  
Vol 12 (5) ◽  
pp. 2567-2585 ◽  
Author(s):  
Y. Kanaya ◽  
A. Hofzumahaus ◽  
H.-P. Dorn ◽  
T. Brauers ◽  
H. Fuchs ◽  
...  

Abstract. A photochemical box model constrained by ancillary observations was used to simulate OH and HO2 concentrations for three days of ambient observations during the HOxComp field campaign held in Jülich, Germany in July 2005. Daytime OH levels observed by four instruments were fairly well reproduced to within 33% by a base model run (Regional Atmospheric Chemistry Mechanism with updated isoprene chemistry adapted from Master Chemical Mechanism ver. 3.1) with high R2 values (0.72–0.97) over a range of isoprene (0.3–2 ppb) and NO (0.1–10 ppb) mixing ratios. Daytime HO2(*) levels, reconstructed from the base model results taking into account the sensitivity toward speciated RO2 (organic peroxy) radicals, as recently reported from one of the participating instruments in the HO2 measurement mode, were 93% higher than the observations made by the single instrument. This also indicates an overprediction of the HO2 to OH recycling. Together with the good model-measurement agreement for OH, it implies a missing OH source in the model. Modeled OH and HO2(*) could only be matched to the observations by addition of a strong unknown loss process for HO2(*) that recycles OH at a high yield. Adding to the base model, instead, the recently proposed isomerization mechanism of isoprene peroxy radicals (Peeters and Müller, 2010) increased OH and HO2(*) by 28% and 13% on average. Although these were still only 4% higher than the OH observations made by one of the instruments, larger overestimations (42–70%) occurred with respect to the OH observations made by the other three instruments. The overestimation in OH could be diminished only when reactive alkanes (HC8) were solely introduced to the model to explain the missing fraction of observed OH reactivity. Moreover, the overprediction of HO2(*) became even larger than in the base case. These analyses imply that the rates of the isomerization are not readily supported by the ensemble of radical observations. One of the measurement days was characterized by low isoprene concentrations (∼0.5 ppb) and OH reactivity that was well explained by the observed species, especially before noon. For this selected period, as opposed to the general behavior, the model tended to underestimate HO2(*). We found that this tendency is associated with high NOx concentrations, suggesting that some HO2 production or regeneration processes under high NOx conditions were being overlooked; this might require revision of ozone production regimes.


2017 ◽  
Vol 200 ◽  
pp. 693-703 ◽  
Author(s):  
Jos Lelieveld

In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt “clean air” as a sustainable development goal.


2020 ◽  
Author(s):  
Benjamin N. Murphy ◽  
Christopher G. Nolte ◽  
Fahim Sidi ◽  
Jesse O. Bash ◽  
K. Wyat Appel ◽  
...  

Abstract. Air quality modeling for research and regulatory applications often involves executing many emissions sensitivity cases to quantify impacts of hypothetical scenarios, estimate source contributions or quantify uncertainties. Despite the prevalence of this task, conventional approaches for perturbing emissions in chemical transport models like the Community Multiscale Air Quality (CMAQ) model require extensive offline creation and finalization of alternative emissions input files. This workflow tends to be time-consuming, error-prone, inconsistent among model users and difficult to document while consuming increased computer storage space. The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module, a component of CMAQv5.3 and beyond, addresses these limitations by performing these modifications online during the air quality simulation. Further, the model contains an Emission Control Interface which allows users to prescribe both simple and highly complex emissions scaling operations with control over individual or multiple chemical species, emissions sources, and spatial areas of interest. DESID further enhances the transparency of its operations with extensive error-checking and optional gridded output of processed emission fields. These new features are of high value to many air quality applications including routine perturbation studies, atmospheric chemistry research, and coupling with external models (e.g. energy system models, reduced-form models).


2018 ◽  
Author(s):  
Xuan Zhang ◽  
John Ortega ◽  
Yuanlong Huang ◽  
Stephen Shertz ◽  
Geoffrey S. Tyndall ◽  
...  

Abstract. Experiments performed in laboratory chambers have contributed significantly to the understanding of the fundamental kinetics and mechanisms of the chemical reactions occurring in the atmosphere. Two chemical regimes, classified as high-NO versus zero-NO conditions, have been extensively studied in previous chamber experiments. Results derived from these two chemical scenarios are widely parameterized in chemical transport models to represent key atmospheric processes in urban and pristine environments. As the anthropogenic NOx emissions in the United States have decreased remarkably in the past few decades, the classic high-NO and zero-NO conditions are no longer applicable to many regions that are constantly impacted by both polluted and background air masses. We present here the development and characterization of the NCAR Atmospheric Simulation Chamber, which is operated in steady state continuous flow mode for the study of atmospheric chemistry under intermediate NO conditions. This particular chemical regime is characterized by constant sub-ppb levels of NO and can be created in the chamber by precise control of the inflow NO concentration and the ratio of chamber mixing to residence timescales. Over the range of conditions achievable in the chamber, the lifetime of peroxy radicals (RO2), a key intermediate from the atmospheric degradation of volatile organic compounds (VOCs), can be extended to several minutes, and a diverse array of reaction pathways, including unimolecular pathways and bimolecular reactions with NO and HO2, can thus be explored. Characterization experiments under photolytic and dark conditions were performed and, in conjunction with model predictions, provide a basis for interpretation of prevailing atmospheric processes in environments with intertwined biogenic and anthropogenic activities. We demonstrate the proof of concept of the steady state continuous flow chamber operation through measurements of major first-generation products, methacrolein (MACR) and methyl vinyl ketone (MVK), from OH- and NO3-initiated oxidation of isoprene.


2021 ◽  
Author(s):  
Leïla Simon ◽  
Valérie Gros ◽  
Jean-Eudes Petit ◽  
François Truong ◽  
Roland Sarda-Esteve ◽  
...  

&lt;p&gt;Volatile Organic Compounds (VOCs) have direct influences on air quality and climate. They also play a key role in atmospheric chemistry, as they are precursors of secondary pollutants, such as ozone (O&lt;sub&gt;3&lt;/sub&gt;) and secondary organic aerosols (SOA).&lt;/p&gt;&lt;p&gt;Long-term datasets of in-situ atmospheric measurements are crucial to characterize the variability of atmospheric chemical composition. Online and continuous measurements of O&lt;sub&gt;3&lt;/sub&gt;, NO&lt;sub&gt;x&lt;/sub&gt; and aerosols have been achieved at the SIRTA-ACTRIS facility (Paris region, France), since 2012. Regarding VOCs, they have been measured there for several years thanks to bi-weekly samplings followed by offline Gas Chromatography analysis. However, this method doesn&amp;#8217;t provide a good representation of the temporal variability of VOC concentrations. To tackle this issue, online VOC measurements using a Proton-Transfer-Reaction Quadrupole Mass-Spectrometer (PTR-Q-MS) have been started in January 2020.&lt;/p&gt;&lt;p&gt;The dataset acquired during the first year of online VOC measurements is analyzed, which gives insights on VOC seasonal variability. The additional long-term datasets obtained from co-located measurements (O&lt;sub&gt;3&lt;/sub&gt;, NO&lt;sub&gt;x&lt;/sub&gt;, aerosol physical and chemical properties, meteorological parameters) are also used for the sake of this study.&lt;/p&gt;&lt;p&gt;Due to Covid-19 pandemic, the year 2020 notably comprised a total lockdown in France in Spring, and a lighter one in Autumn. Therefore, a focus can be made on the impact of these lockdowns on the VOC variability and sources. To this end, the diurnal cycles of VOCs considered markers for anthropogenic sources are carefully investigated. Results notably indicate that markers for traffic and wood burning sources behave quite differently during the Spring lockdown in comparison to the other periods. A source apportionment analysis using positive matrix factorization allows to further document the seasonal variability of VOC sources and the impacts on air quality associated with the lockdown measures.&lt;/p&gt;


2017 ◽  
Vol 10 (2) ◽  
pp. 585-607 ◽  
Author(s):  
William J. Collins ◽  
Jean-François Lamarque ◽  
Michael Schulz ◽  
Olivier Boucher ◽  
Veronika Eyring ◽  
...  

Abstract. The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and their climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. Specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.


Sign in / Sign up

Export Citation Format

Share Document