scholarly journals Relationship between the 1997/98 El Niño and 1999/2001 La Niña events and oil palm tree production in Tumaco, Southwestern Colombia

2006 ◽  
Vol 6 ◽  
pp. 195-199 ◽  
Author(s):  
M. C. Cadena ◽  
A. Devis-Morales ◽  
J. D. Pabón ◽  
I. Málikov ◽  
J. A. Reyna-Moreno ◽  
...  

Abstract. Although the relationship between ENSO events and oceanographic and meteorological conditions of Southwestern Colombia is well-known, very little work has been done to assess the related socio-economic impacts. This is the first effort made to determine the effect of such events on local climate and the impact of this variability on oil palm tree (Elaeis guineensis) production in the Tumaco municipality, which is located on Colombia's Pacific coast. First, we studied the correlation between sea surface temperature anomalies (SSTA) in the various El Niño regions and those observed off Tumaco. Next, we scrutinized the ENSO impact on regional climatic indicators, e.g. active solar radiation (hrs/day), air temperature (°C), and rain (mm). Finally, we analyzed the relationship between ENSO, Tumaco climate variability, and oil palm production (tons/hectare-month). Hours of active radiation increased (decreased) under El Niño (La Niña) conditions, as did average monthly precipitation rates and air temperature. ENSO-related climatic variability also had an important effect on the different developmental stages of the oil palm tree, thereby affecting its production. The worst scenario was found during La Niña, when reduced intensity of the rainy season (second semester) caused severe droughts in the region.

2016 ◽  
Vol 29 (5) ◽  
pp. 1797-1808 ◽  
Author(s):  
Lee J. Welhouse ◽  
Matthew A. Lazzara ◽  
Linda M. Keller ◽  
Gregory J. Tripoli ◽  
Matthew H. Hitchman

Abstract Previous investigations of the relationship between El Niño–Southern Oscillation (ENSO) and the Antarctic climate have focused on regions that are impacted by both El Niño and La Niña, which favors analysis over the Amundsen and Bellingshausen Seas (ABS). Here, 35 yr (1979–2013) of European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) data are analyzed to investigate the relationship between ENSO and Antarctica for each season using a compositing method that includes nine El Niño and nine La Niña periods. Composites of 2-m temperature (T2m), sea level pressure (SLP), 500-hPa geopotential height, sea surface temperatures (SST), and 300-hPa geopotential height anomalies were calculated separately for El Niño minus neutral and La Niña minus neutral conditions, to provide an analysis of features associated with each phase of ENSO. These anomaly patterns can differ in important ways from El Niño minus La Niña composites, which may be expected from the geographical shift in tropical deep convection and associated pattern of planetary wave propagation into the Southern Hemisphere. The primary new result is the robust signal, during La Niña, of cooling over East Antarctica. This cooling is found from December to August. The link between the southern annular mode (SAM) and this cooling is explored. Both El Niño and La Niña experience the weakest signal during austral autumn. The peak signal for La Niña occurs during austral summer, while El Niño is found to peak during austral spring.


2021 ◽  
Vol 892 (1) ◽  
pp. 012057
Author(s):  
D Firda ◽  
W Estiningtyas

Abstract Climate change has had a significant impact on the agricultural sector and the impact is different in each place due to spatial variations in Indonesia. One of the efforts that must be made to reduce risk is to adapt. The purpose of this paper is to determine the key locations and their relationship to rice production for adaptation to climate change. Rainfall data and Oceanic Nino Index (ONI) are used to see the relationship between these two parameters through regression analysis and significance in El Niño and La Niña conditions. In El Niño conditions 24 key locations were obtained and in La Niña 3 priority locations. From the selected key locations, regression analysis was performed to determine the relationship between rainfall and rice production. The regression results at the sample locations show a fairly high R2 value, namely 0.4 to 0.9, namely in Juntinyuat (West Java), Palasari (Bali), and Detusoko (East Nusa Tenggara). Other key locations are also found in several provinces. This key location is a priority location where the rainfall is strongly influenced by the extreme climate phenomenon El Niño and La Niña so that it can be used to assess the impact and monitor its impact on food farming. Socialization of the use of climate information to extension workers and farmers will greatly help reduce risks and increase capacity to adapt to climate change.


2013 ◽  
Vol 70 (6) ◽  
pp. 1821-1832 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Dehai Luo

Abstract This study investigates the relationship between El Niño–Southern Oscillation (ENSO) and southern annular mode (SAM) events with an idealized general circulation model. A series of model calculations are performed to examine why positive (negative) intraseasonal SAM events are observed to occur much more frequently during La Niña (El Niño). Seven different model runs are performed: a control run, three El Niño runs (the first with a zonally symmetric heating field, the second with a zonally asymmetric heating/cooling field, and the third that combines both fields), and three La Niña runs (with heating fields of opposite sign). The model runs with the zonally symmetric and combined heating fields are found to yield the same relationship between the phase of ENSO and the preferred phase for SAM events as is observed in the atmosphere. In contrast, the zonally asymmetric model runs are found to have the opposite SAM–ENSO phase preference characteristics. Since a reduced midlatitude meridional potential vorticity gradient has been linked to a greater frequency of positive-phase SAM events, and vice versa for negative SAM events, the meridional potential vorticity gradient in the various model runs was compared. The results suggest that the phase preference of SAM events during ENSO arises from the impact of the zonal-mean heating on the midlatitude meridional potential vorticity gradient.


Agrometeoros ◽  
2018 ◽  
Vol 26 (1) ◽  
Author(s):  
Ronaldo Matzenauer ◽  
Bernadete Radin ◽  
Alberto Cargnelutti Filho

O objetivo deste trabalho foi avaliar a relação entre o fenômeno El Niño Oscilação Sul - ENOS e o rendimento de grãos de soja e de milho no Rio Grande do Sul e verificar a hipótese de que os eventos El Niño são favoráveis e os eventos La Niña são prejudiciais ao rendimento de grãos das culturas. Foram utilizados dados de rendimento de grãos dos anos agrícolas de 1974/75 a 2016/17, e relacionados com as ocorrências de eventos ENOS. Foram analisados os dados de rendimento observados na colheita e os dados estimados com a remoção da tendência tecnológica. Os resultados mostraram que não houve diferença significativa do rendimento médio de grãos de soja e de milho na comparação entre os eventos ENOS. Palavras-chave: El Niño, La Niña, safras agrícolas. Abstract – The objective of this work was to evaluate the relationship between the El Niño Southern Oscillation (ENSO) phenomenon with the grain yield of soybean and maize in Rio Grande do Sul state, Brazil and to verify the hypothesis that the El Niño events are favorable and the La Niña events are harmful to the culture’s grain yields. Were used data from the agricultural years of 1974/75 to 2016/17, and related to the occurrence of ENOS events. We analyzed income data observed at harvest and estimated data with technological tendency was removed. The results showed that there was no significant difference in the average yield of soybeans and corn in the comparison between events.


2010 ◽  
Vol 67 (9) ◽  
pp. 2854-2870 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Dehai Luo

Abstract This study examines the relationship between intraseasonal southern annular mode (SAM) events and the El Niño–Southern Oscillation (ENSO) using daily 40-yr ECMWF Re-Analysis (ERA-40) data. The data coverage spans the years 1979–2002, for the austral spring and summer seasons. The focus of this study is on the question of why positive SAM events dominate during La Niña and negative SAM events during El Niño. A composite analysis is performed on the zonal-mean zonal wind, Eliassen–Palm fluxes, and two diagnostic variables: the meridional potential vorticity gradient, a zonal-mean quantity that is used to estimate the likelihood of wave breaking, and the wave breaking index (WBI), which is used to evaluate the strength of the wave breaking. The results of this investigation suggest that the background zonal-mean flow associated with La Niña (El Niño) is preconditioned for strong (weak) anticyclonic wave breaking on the equatorward side of the eddy-driven jet, the type of wave breaking that is found to drive positive (negative) SAM events. A probability density function analysis of the WBI, for both La Niña and El Niño, indicates that strong anticyclonic wave breaking takes place much more frequently during La Niña and weak anticyclonic wave breaking during El Niño. It is suggested that these wave breaking characteristics, and their dependency on the background flow, can explain the strong preference for SAM events of one phase during ENSO. The analysis also shows that austral spring SAM events that coincide with ENSO are preceded by strong stratospheric SAM anomalies and then are followed by a prolonged period of wave breaking that lasts for approximately 30 days. These findings suggest that the ENSO background flow also plays a role in the excitation of stratospheric SAM anomalies and that the presence of these stratospheric SAM anomalies in turn excites and then maintains the tropospheric SAM anomalies via a positive eddy feedback.


2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


Author(s):  
Arini Wahyu Utami ◽  
Jamhari Jamhari ◽  
Suhatmini Hardyastuti

Paddy and maize are two important food crops in Indonesia and mainly produced in Java Island. This research aimed to know the impact of El Nino and La Nina on paddy and maize farmer’s supply in Java. Cross sectional data from four provinces in Java was combined with time series data during 1987-2006. Paddy supply was estimated using log model, while maize supply used autoregressive model; each was estimated using two types of regression function. First, it included dummy variable of El Nino and La Nina to know their influence into paddy and maize supply. Second, Southern Oscillation Index was used to analyze the supply changing when El Nino or La Nina occur. The result showed that El Nino and La Nina did not influence paddy supply, while La Nina influenced maize supply in Java. Maize supply increased when La Nina occurred.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jialin Lin ◽  
Taotao Qian

Abstract The El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth’s climate system, and strongly modulates global temperature, precipitation, atmospheric circulation, tropical cyclones and other extreme events. However, forecasting ENSO is one of the most difficult problems in climate sciences affecting both interannual climate prediction and decadal prediction of near-term global climate change. The key question is what cause the switch between El Nino and La Nina. For the past 30 years, ENSO forecasts have been limited to short lead times after ENSO sea surface temperature (SST) anomaly has already developed, but unable to predict the switch between El Nino and La Nina. Here, we demonstrate that the switch between El Nino and La Nina is caused by a subsurface ocean wave propagating from western Pacific to central and eastern Pacific and then triggering development of SST anomaly. This is based on analysis of all ENSO events in the past 136 years using multiple long-term observational datasets. The wave’s slow phase speed and decoupling from atmosphere indicate that it is a forced wave. Further analysis of Earth’s angular momentum budget and NASA’s Apollo Landing Mirror Experiment suggests that the subsurface wave is likely driven by lunar tidal gravitational force.


2013 ◽  
Vol 5 (2) ◽  
pp. 148-161 ◽  
Author(s):  
Iván J. Ramírez ◽  
Sue C. Grady ◽  
Michael H. Glantz

Abstract In the 1990s Peru experienced the first cholera epidemic after almost a century. The source of emergence was initially attributed to a cargo ship, but later there was evidence of an El Niño association. It was hypothesized that marine ecosystem changes associated with El Niño led to the propagation of V. cholerae along the coast of Peru, which in turn initiated the onset of the epidemic in 1991. Earlier studies supported this explanation by demonstrating a relationship between elevated temperatures and increased cholera incidence in Peru; however, other aspects of El Niño–Southern Oscillation (ENSO) and their potential impacts on cholera were not investigated. Therefore, this study examines the relationship between El Niño and cholera in Peru from a holistic view of the ENSO cycle. A “climate affairs” approach is employed as a conceptual framework to incorporate ENSO’s multidimensional nature and to generate new hypotheses about the ENSO and cholera association in Peru. The findings reveal that ENSO may have been linked to the cholera epidemic through multiple pathways, including rainfall extremes, La Niña, and social vulnerability, with impacts depending on the geography of teleconnections within Peru. When the definition of an ENSO event is examined, cholera appears to have emerged either during ENSO neutral or La Niña conditions. Furthermore, the analysis herein suggests that the impact of El Niño arrived much later, possibly resulting in heightened transmission in the austral summer of 1992. In conclusion, a modified hypothesis with these new insights on cholera emergence and transmission in Peru is presented.


Sign in / Sign up

Export Citation Format

Share Document