scholarly journals Quantification and mitigation of the airborne limb imaging FTIR GLORIA instrument effects and uncertainties

2021 ◽  
Author(s):  
Jörn Ungermann ◽  
Anne Kleinert ◽  
Guido Maucher ◽  
Irene Bartolomé ◽  
Felix Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an infrared imaging FTS spectrometer with a 2-D infrared detector operated on two high flying research aircrafts. It has flown on eight campaigns and measured along more than 300 000 km of flight track. This paper details our instrument calibration and characterization efforts, which in particular leverage almost exclusively in-flight data. First, we present the framework of our new calibration scheme, which uses information from all three available calibration measurements (two blackbodies and upward pointing deep space measurements). Part of this scheme is a new correction algorithm correcting the erratically changing non-linearity of a subset of detector pixels and the identification of remaining bad pixels. Using this new calibration, we derive a 1-σ bound of 1 % on the instrumental gain error and a bound of 30 nW cm−2 sr−1 cm on the instrumental offset error. We show how we can examine the noise and spectral accuracy for all measured atmospheric spectra and derive a spectral accuracy of 5 ppm, on average. All these errors are compliant with the initial instrument requirements. We also discuss, for the first time, the pointing system of the GLORIA instrument. Combining laboratory calibration efforts with the measurement of astronomical bodies during the flight, we can derive a pointing accuracy of 0.032°, which corresponds to one detector pixel. The paper concludes with a brief study on how these newly characterised instrumental parameters affect temperature and ozone retrievals. We find that, first, the pointing uncertainty and, second, the instrumental gain uncertainty introduce the largest error in the result.

Author(s):  
JAVAD SADRI ◽  
CHING Y. SUEN ◽  
TIEN D. BUI

A novel and efficient method for correction of slant angles in handwritten numeral strings is proposed. For the first time, the statistical distribution of slant angles in handwritten numerals is investigated and the effects of slant correction on the segmentation of handwritten numeral strings are shown. In our proposed slant correction method, utilizing geometric features, a Component Slant Angle (CSA) is estimated for each connected component independently. A weighted average is then used to compute the String Slant Angle (SSA), which is applied uniformly to correct the slant of all the components in numeral strings. Our experimental results have revealed novel statistics for slant angles of handwritten numeral strings, and also showed that slant correction can significantly improve extraction of segmentation features and segmentation accuracy of touching numerals. Comparison between our slant correction algorithm and similar algorithms in the literature show that our algorithm is more efficient, and on average it has a faster running time.


2020 ◽  
Vol 13 (11) ◽  
pp. 5955-5975
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multiband algorithm similar to those of polar-orbiting satellites' sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to limitations in the land surface reflectance relationships between the 0.47 µm band and the 2.2 µm band and between the 0.64 µm band and 2.2 µm band used in the ABI AOD retrieval algorithm, which vary with the Sun–satellite geometry and NDVI (normalized difference vegetation index). To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30 d period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period 6 August to 31 December 2018 are used to evaluate the bias correction algorithm. After bias correction, the correlation between the top 2 quality ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root-mean-square error (RMSE) improves from 0.09 to 0.05. These results for the bias-corrected top 2 qualities ABI AOD are comparable to those of the corrected high-quality ABI AOD. By using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the areal coverage of ABI AOD is increased by about 100 % without loss of data accuracy.


2013 ◽  
Vol 427-429 ◽  
pp. 1948-1951
Author(s):  
Jia Lin Ma ◽  
Xia Zhang

Uncooled infrared imaging system has been increasingly applied in both the national defense and various fields of national economy. Such popularity is attributed to many of its advantages, including small size, light weight, low energy-consumption and superior portability. However, as limited by the structure and the material of infrared detector and the manufacturing techniques, infrared images are plagued with low resolution and poor image quality. This paper mainly studies the uncooled infrared image processing based on the gray levels partition processing, gray levels stretching and histogram modification, it aims to enhance the visual effect of infrared image.


2019 ◽  
Vol 9 (10) ◽  
pp. 1993 ◽  
Author(s):  
Ende Wang ◽  
Ping Jiang ◽  
Xukui Hou ◽  
Yalong Zhu ◽  
Liangyu Peng

In the uncooled infrared imaging systems, owing to the non-uniformity of the amplifier in the readout circuit, the infrared image has obvious stripe noise, which greatly affects its quality. In this study, the generation mechanism of stripe noise is analyzed, and a new stripe correction algorithm based on wavelet analysis and gradient equalization is proposed, according to the single-direction distribution of the fixed image noise of infrared focal plane array. The raw infrared image is transformed by a wavelet transform, and the cumulative histogram of the vertical component is convolved by a Gaussian operator with a one-dimensional matrix, in order to achieve gradient equalization in the horizontal direction. In addition, the stripe noise is further separated from the edge texture by a guided filter. The algorithm is verified by simulating noised image and real infrared image, and the comparison experiment and qualitative and quantitative analysis with the current advanced algorithm show that the correction result of the algorithm in this paper is not only mild in visual effect, but also that the structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) indexes can get the best result. It is shown that this algorithm can effectively remove stripe noise without losing details, and the correction performance of this method is better than the most advanced method.


2012 ◽  
Vol 433-440 ◽  
pp. 4120-4123
Author(s):  
Shu Li Lou ◽  
Yan Li Han ◽  
Jian Cun Ren ◽  
Xiao Hu Yuan ◽  
Xiao Dong Zhou

Noises of infrared detector have an important influence on sensitivity of infrared imaging system, and it affect the imaging quality and performance of infrared system. Research on noises of infrared detector is a challenging topic in designing, simulating and evaluating of infrared imaging system. All kinds of noises are studied in detail, and mathematical models are built. The method of simulating noises of detector is proposed, and noises are simulated based on the mathematical model.


2012 ◽  
Vol 5 (12) ◽  
pp. 2993-3006 ◽  
Author(s):  
P. E. Sheese ◽  
K. Strong ◽  
E. J. Llewellyn ◽  
R. L. Gattinger ◽  
J. M. Russell ◽  
...  

Abstract. The Optical Spectrograph and InfraRed Imaging System (OSIRIS) on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.


2020 ◽  
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multi-band algorithm similar to those of polar-orbiting satellites’ sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). Therefore, ABI AOD is expected to have accuracy and precision comparable to MODIS AOD and VIIRS AOD. However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to errors in the land surface reflectance relationship between the bands used in the ABI AOD retrieval algorithm, which vary with respect to the Sun-satellite geometry. To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30-day period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period August 6 to December 31, 2018 are used to validate the bias correction algorithm. For the top 2 qualities ABI AOD, after bias correction, the correlation between ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root mean square error (RMSE) improves from 0.09 to 0.05. These results for the bias corrected top 2 qualities ABI AOD are comparable to those of the uncorrected high-quality ABI AOD. Thus, by using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the area coverage of ABI AOD is substantially increased without loss of data accuracy.


2001 ◽  
Vol 200 ◽  
pp. 261-264
Author(s):  
Yoichi Itoh

We have carried out high-resolution near-infrared imaging observations of a protostar L1551 IRS 5 with the Subaru Telescope. The jet structure of IRS5 is resolved into two independent jets for the first time from the ground. Successive near-infrared spectroscopy has revealed that the jet emission is dominated by [Fe II] lines in the J and H-bands. While the visual-extinction reaches more than 20 mag in the close vicinity of IRS 5, it decreases rapidly at ∼1″ from IRS 5 and remains constant around 7 mag at larger distances. The twisted structure and bright emission knots are intrinsic to the jets, not due to a spatial variation of the extinction.


Sign in / Sign up

Export Citation Format

Share Document