scholarly journals Methodology for determining multilayered temperature inversions

2015 ◽  
Vol 8 (5) ◽  
pp. 2051-2060 ◽  
Author(s):  
G. J. Fochesatto

Abstract. Temperature sounding of the atmospheric boundary layer (ABL) and lower troposphere exhibits multilayered temperature inversions specially in high latitudes during extreme winters. These temperature inversion layers are originated based on the combined forcing of local- and large-scale synoptic meteorology. At the local scale, the thermal inversion layer forms near the surface and plays a central role in controlling the surface radiative cooling and air pollution dispersion; however, depending upon the large-scale synoptic meteorological forcing, an upper level thermal inversion can also exist topping the local ABL. In this article a numerical methodology is reported to determine thermal inversion layers present in a given temperature profile and deduce some of their thermodynamic properties. The algorithm extracts from the temperature profile the most important temperature variations defining thermal inversion layers. This is accomplished by a linear interpolation function of variable length that minimizes an error function. The algorithm functionality is demonstrated on actual radiosonde profiles to deduce the multilayered temperature inversion structure with an error fraction set independently.

2014 ◽  
Vol 7 (10) ◽  
pp. 10559-10583 ◽  
Author(s):  
G. J. Fochesatto

Abstract. The atmospheric boundary layer (ABL) exhibit multilayered thermal structure especially in polar atmosphere during extreme winters. These thermal inversions are originated based on the combined forcing of local and large scale synoptic meteorology. At the local scale the thermal inversion layer forms near the surface and plays a central role in controlling the surface radiative cooling; however, depending upon the large scale synoptic meteorological forcing, an upper level thermal inversion can also exist topping the local ABL. In this article a numerical methodology is developed to determine all-thermal inversion layers present in a given temperature profile and deduce some of their thermodynamic properties. The algorithm extract from the temperature profile the most important temperature variations defining thermal layers. This is accomplished by a inear interpolation function of variable length that minimizes an error function. The algorithm functionality is demonstrated on actual radiosonde profiles to deduce all-present inversion layers with an error fraction set independently.


2008 ◽  
Vol 4 (S253) ◽  
pp. 239-245
Author(s):  
Ivan Hubeny ◽  
Adam Burrows

AbstractWe show that a consistent fit to observed secondary eclipse data for several strongly irradiated transiting planets demands a temperature inversion (stratosphere) at altitude. Such a thermal inversion significantly influences the planet/star contrast ratios at the secondary eclipse, their wavelength dependences, and, importantly, the day-night flux contrast during a planetary orbit. The presence of the thermal inversion/stratosphere seems to roughly correlate with the stellar flux at the planet. Such temperature inversions might be caused by an upper-atmosphere absorber whose exact nature is still uncertain.


2020 ◽  
Vol 33 (21) ◽  
pp. 9327-9350 ◽  
Author(s):  
Jianping Guo ◽  
Xinyan Chen ◽  
Tianning Su ◽  
Lin Liu ◽  
Youtong Zheng ◽  
...  

AbstractThe variability of the lower tropospheric temperature inversion (TI) across China remains poorly understood. Using seven years’ worth of high-resolution radiosonde measurements at 120 sites, we compile the climatology of lower tropospheric TI in terms of frequency, intensity, and depth during the period from 2011 to 2017. The TI generally exhibits strong seasonal and geographic dependencies. Particularly, the TI frequency is found to be high in winter and low in summer, likely due to the strong aerosol radiative effect in winter. The frequency of the surface-based inversion (SBI) exhibits a “west low, east high” pattern at 0800 Beijing time (BJT), which then switches to “west high, east low” at 2000 BJT. Both the summertime SBI and elevated inversion (EI) reach a peak at 0800 BJT and a trough at 1400 BJT. Interestingly, the maximum wintertime EI frequency occurs over Southeast China (SEC) rather than over the North China Plain (NCP), likely attributable to the combination of the heating effect of black carbon (BC) originating from the NCP, along with the strong subsidence and trade inversion in SEC. Correlation analyses between local meteorology and TI indicate that larger lower tropospheric stability (LTS) favors more frequent and stronger TIs, whereas the stronger EI under smaller LTS conditions (unstable atmosphere) is more associated with subsidence rather than BC. Overall, the spatial pattern of the lower tropospheric TI and its variability in China are mainly controlled by three factors: local meteorology, large-scale subsidence, and BC-induced heating. These findings help shed some light on the magnitude, spatial distribution, and underlying mechanisms of the lower tropospheric TI variation in China.


2018 ◽  
Vol 18 (22) ◽  
pp. 16399-16407 ◽  
Author(s):  
Yuta Hozumi ◽  
Akinori Saito ◽  
Takeshi Sakanoi ◽  
Atsushi Yamazaki ◽  
Keisuke Hosokawa

Abstract. Large-scale spatial structures of mesospheric bores were observed by the Visible and near-Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in the mesospheric O2 airglow at 762 nm wavelength. Two mesospheric bore events in southern midlatitudes are reported in this paper: one event at 48–54∘ S, 10–20∘ E on 9 July 2015 and the other event at 35–43∘ S, 24∘ W–1∘ E on 7 May 2013. For the first event, the temporal evolution of the mesospheric bore was investigated from the difference of two observations in consecutive passes. The estimated eastward speed of the bore is 100 m s−1. The number of trailing waves increased with a rate of 3.5 waves h−1. Anticlockwise rotation with a speed of 20∘ h−1 was also recognized. These parameters are similar to those reported by previous studies based on ground-based measurements, and the similarity supports the validity of VISI observation for mesospheric bores. For the second event, VISI captured a mesospheric bore with a large-scale and undulating wave front. The horizontal extent of the wave front was 2200 km. The long wave front undulated with a wavelength of 1000 km. The undulating wave front is a new feature of mesospheric bores revealed by the wide field of view of VISI. We suggest that nonuniform bore propagating speed due to inhomogeneous background ducting structure might be a cause of the undulation of the wave front. Temperature measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite indicated that bores of both events were ducted in a temperature inversion layer.


2021 ◽  
Author(s):  
Maxime Grandin ◽  
Minna Palmroth ◽  
Graeme Whipps ◽  
Milla Kalliokoski ◽  
Mark Ferrier ◽  
...  

<p>Recently, citizen scientist photographs led to the discovery of a new auroral form called "the dune aurora" which exhibits parallel stripes of brighter emission in the green diffuse aurora at about 100 km altitude. This discovery raised several questions, such as (i) whether the dunes are associated with particle precipitation, (ii) whether their structure arises from spatial inhomogeneities in the precipitating fluxes or in the underlying neutral atmosphere, and (iii) whether they are the auroral manifestation of an atmospheric wave called a mesospheric bore. This study investigates a large-scale dune aurora event on 20 January 2016 above Northern Europe. The dunes were observed from Finland to Scotland, spanning over 1500 km for at least four hours. Spacecraft observations confirm that the dunes are associated with electron precipitation and reveal the presence of a temperature inversion layer below the mesopause during the event, creating suitable conditions for mesospheric bore formation. The analysis of a time lapse of pictures by a citizen scientist from Scotland leads to the estimate that, during this event, the dunes propagate toward the west-southwest direction at about 200 m/s, presumably indicating strong horizontal winds near the mesopause. These results show that citizen science and dune aurora studies can fill observational gaps and be powerful tools to investigate the least-known region of near-Earth space at altitudes near 100 km.</p>


2013 ◽  
Vol 25 (5) ◽  
pp. 697-710 ◽  
Author(s):  
Maurizio Busetto ◽  
Christian Lanconelli ◽  
Mauro Mazzola ◽  
Angelo Lupi ◽  
Boyan Petkov ◽  
...  

AbstractFor most parts of the year the Antarctic Plateau has a surface temperature inversion with strength c. 20 K. Under such conditions the warmer air at the top of the inversion layer contributes more to the clear sky atmospheric longwave radiation at surface level than does the colder air near the ground. Hence, it is more appropriate to relate longwave irradiance (LWI) to the top of the inversion layer temperature (Tm) than to the ground level temperature (Tg). Analysis of radio soundings carried out at Dome C and South Pole during 2006–08 shows that the temperature at 400 m above the surface (T400) is a good proxy for Tm and is linearly related to Tg with correlation coefficients greater than 0.8. During summer, radiosonde measurements show almost isothermal conditions, hence T400 still remains a good proxy for the lower troposphere maximum temperature. A methodology is presented to parameterize the clear sky effective emissivity in terms of the troposphere maximum temperature, using ground temperature measurements. The predicted LWI values for both sites are comparable with those obtained using radiative transfer models, while for Dome C the bias of 0.8 W m-2 and the root mean square (RMS) of 6.2 W m-2 are lower than those calculated with previously published parametric equations.


2004 ◽  
Vol 22 (10) ◽  
pp. 3375-3382 ◽  
Author(s):  
S. Fadnavis ◽  
G. Beig

Abstract. To study the mesospheric temperature inversion, daily temperature profiles obtained from the Halogen Occultation Experiment (HALOE) aboard the Upper Atmospheric Research Satellite (UARS) during the period 1991-2001 over the Indian tropical region (0-30° N, 60-100° E) have been analyzed for the altitude range 34-86km. The frequency of occurrence of inversion is found to be 67% over this period, which shows a strong semiannual cycle, with a maximum occurring one month after equinoxes (May and November). Amplitude of inversion is found to be as high as 40K. Variation of monthly mean peak and bottom heights along with amplitude of inversions also show the semiannual cycle. The inversion layer is detected most frequently in the altitude range of 70-85km, with peak height ranging from 80 to 83km and that of the bottom height from 72 to 74km. A comparison of frequency of temperature inversion with that obtained from Rayleigh lidar observations over Gadanki (13.5° N, 60-100° E) is found to be reasonable. The seasonal variation of amplitude and frequency of occurrence of temperature inversion indicates a good correlation with seasonal variation of average ozone concentration over the altitude range of the inversion layer.


2018 ◽  
Author(s):  
Yuta Hozumi ◽  
Akinori Saito ◽  
Takeshi Sakanoi ◽  
Atsushi Yamazaki ◽  
Keisuke Hosokawa

Abstract. Large-scale spatial structures of mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in the mesospheric O2 airglow at 762 nm wavelength. Two mesospheric bore events are reported in this paper; one event was observed over the south of African continent (48° S–54° S and 10° E–25° E) on 9 July 2015, and the other event over the south Atlantic Ocean (35° S–43° S and 24° W–1° E) on 7 May 2013. For the first event, the temporal evolution of the mesospheric bore was investigated from the difference of two observations in consecutive paths. The estimated eastward speed of the bore is 100 m/sec. The number of trailing waves increased with a rate of 3.5 wave/hour. Anti-clockwise rotation with a speed of 20º/hour was also recognized. These parameters are similar to those reported by previous studies based on ground-based measurements, and the similarity supports the validity of VISI observation for mesospheric bores. For the second event, VISI captured a mesopshric bore having a large-scale and undulating wave front. The horizontal extent of the wave front was 2,200 km. The long wave front undulated with 1,000 km wave length. The undulating wave front is a new feature of mesospheric bore revealed by the wide FOV of VISI. We suggest that non-uniform bore propagating speed due to inhomogeneous background ducting structure might be a cause of the undulation of the wave front. Temperature measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) of the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite indicated that bores of both events were ducted in a temperature inversion layer.


2020 ◽  
Vol 237 ◽  
pp. 03021
Author(s):  
Yasukuni Shibata ◽  
Nagasawa Chikao ◽  
Makoto Abo

The eye-safe lower-tropospheric temperature profiler with three wavelength differential absorption lidar (DIAL) technique which can perform the continuous temperature profile observation through daytime and nighttime is conducted. The DIAL consists of a Nd:YAG laser pumped an OPG tuned around 1573 nm of an CO2 absorption line with 2 mJ/pulse at 400 Hz repetition rate and a receiving telescope of 25cm diameter. In this paper, we show the result of continuous temperature profile observations over 25 hours from 0.39 to 2.5 km altitude in the lower-troposphere. We can see temporally the generation and disappearance of the temperature inversion layers in the planetary boundary layer.


2009 ◽  
Vol 137 (11) ◽  
pp. 3978-3991 ◽  
Author(s):  
Wen Zhou ◽  
Johnny C. L. Chan ◽  
Wen Chen ◽  
Jian Ling ◽  
Joaquim G. Pinto ◽  
...  

Abstract In January 2008, central and southern China experienced persistent low temperatures, freezing rain, and snow. The large-scale conditions associated with the occurrence and development of these snowstorms are examined in order to identify the key synoptic controls leading to this event. Three main factors are identified: 1) the persistent blocking high over Siberia, which remained quasi-stationary around 65°E for 3 weeks, led to advection of dry and cold Siberian air down to central and southern China; 2) a strong persistent southwesterly flow associated with the western Pacific subtropical high led to enhanced moisture advection from the Bay of Bengal into central and southern China; and 3) the deep inversion layer in the lower troposphere associated with the extended snow cover over most of central and southern China. The combination of these three factors is likely responsible for the unusual severity of the event, and hence a long return period.


Sign in / Sign up

Export Citation Format

Share Document