scholarly journals An overview of drought events in the Carpathian Region in 1961–2010

2013 ◽  
Vol 10 (1) ◽  
pp. 21-32 ◽  
Author(s):  
J. Spinoni ◽  
T. Antofie ◽  
P. Barbosa ◽  
Z. Bihari ◽  
M. Lakatos ◽  
...  

Abstract. The Carpathians and their rich biosphere are considered to be highly vulnerable to climate change. Drought is one of the major climate-related damaging natural phenomena and in Europe it has been occurring with increasing frequency, intensity, and duration in the last decades. Due to climate change, land cover changes, and intensive land use, the Carpathian Region is one of the areas at highest drought risk in Europe. In order to analyze the drought events over the last 50 yr in the area, we used a 1961–2010 daily gridded temperature and precipitation dataset. From this, monthly 0.1° × 0.1° grids of four drought indicators (Standardized Precipitation-Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI), Reconnaissance Drought Indicator (RDI), and Palfai Aridity/Drought Index (PADI)) have been calculated. SPI, SPEI, and RDI have been computed at different time scales (3, 6, and 12 months), whilst PADI has been computed on an annual basis. The dataset used in this paper has been constructed in the framework of the CARPATCLIM project, run by a consortium of institutions from 9 countries (Austria, Croatia, Czech Republic, Hungary, Poland, Romania, Serbia, Slovakia, and Ukraine) with scientific support by the Joint Research Centre (JRC) of the European Commission. Temperature and precipitation station data have been collected, quality-checked, completed, homogenized, and interpolated on the 0.1° × 0.1° grid, and drought indicators have been consequently calculated on the grid itself. Monthly and annual series of the cited indicators are presented, together with high-resolution maps and statistical analysis of their correlation. A list of drought events between 1961 and 2010, based on the agreement of the indicators, is presented. We also discuss three case studies: drought in 1990, 2000, and 2003. The drought indicators have been compared both on spatial and temporal scales: it resulted that SPI, SPEI, and RDI are highly comparable, especially over a 12-month accumulation period. SPEI, which includes PET (Potential Evapo-Transpiration) as RDI does, proved to perform best if drought is caused by heat waves, whilst SPI performed best if drought is mainly driven by a rainfall deficit, because SPEI and RDI can be extreme in dry periods. According to PADI, the Carpathian Region has a sufficient natural water supply on average, with some spots that fall into the ''mild dry'' class, and this is also confirmed by the FAO-UNEP aridity index and the Köppen-Geiger climate classification.

2019 ◽  
Vol 11 (3) ◽  
pp. 651-664 ◽  
Author(s):  
Susan Joslyn ◽  
Raoni Demnitz

Abstract Despite near unanimous agreement among climate scientists about global warming, a substantial proportion of Americans remain skeptical or unconcerned. The two experiments reported here tested communication strategies designed to increase trust in and concern about climate change. They also measured attitudes toward climate scientists. Climate predictions were systematically manipulated to include either probabilistic (90% predictive interval) or deterministic (mean value) projections that described either concrete (i.e., heat waves and floods) or abstract events (i.e., temperature and precipitation). The results revealed that projections that included the 90% predictive interval were considered more trustworthy than deterministic projections. In addition, in a nationally representative sample, Republicans who were informed of concrete events with predictive intervals reported greater concern and more favorable attitudes toward climate scientists than when deterministic projections were used. Overall, these findings suggest that while climate change beliefs may be rooted in partisan identity, they remain malleable, especially when targeted communication strategies are used.


Author(s):  
Kuo Li ◽  
Jie Pan

Abstract. Climate change has been a hotspot of scientific research in the world for decades, which caused serious effects of agriculture, water resources, ecosystem, environment, human health and so on. In China, drought accounts for almost 50 % of the total loss among all the meteorological disasters. In this article the interpolated and corrected precipitation of one GCM (HadGEM2-ES) output under four emission scenarios (RCP2.6, 4.5, 6.0, 8.5) were used to analyze the drought. The standardized precipitation index (SPI) calculated with these data was used to assess the climate change impact on droughts from meteorological perspectives. Based on five levels of SPI, an integrated index of drought hazard (IIDH) was established, which could explain the frequency and intensity of meteorological drought in different regions. According to yearbooks of different provinces, 15 factors have been chosen which could represent the impact of drought on human being, crops, water resources and economy. Exposure index, sensitivity index and adaptation index have been calculated in almost 2400 counties and vulnerability of drought has been evaluated. Based on hazard and vulnerability evaluation of drought, risk assessment of drought in China under the RCP2.6, 4.5, 6.0, 8.5 emission scenarios from 2016 to 2050 has been done. Results from such a comprehensive study over the whole country could be used not only to inform on potential impacts for specific sectors but also can be used to coordinate adaptation/mitigation strategies among different sectors/regions by the central government.


2009 ◽  
Vol 48 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Bradfield Lyon ◽  
Lareef Zubair ◽  
Vidhura Ralapanawe ◽  
Zeenas Yahiya

Abstract In regions of climatic heterogeneity, finescale assessment of drought risk is needed for policy making and drought management, mitigation, and adaptation. The relationship between drought relief payments (a proxy for drought risk) and meteorological drought indicators is examined through a retrospective analysis for Sri Lanka (1960–2000) based on records of district-level drought relief payments and a dense network of 284 rainfall stations. The standardized precipitation index and a percent-of-annual-average index for rainfall accumulated over 3, 6, 9, and 12 months were used, gridded to a spatial resolution of 10 km. An encouraging correspondence was identified between the spatial distribution of meteorological drought occurrence and historical drought relief payments at the district scale. Time series of drought indices averaged roughly over the four main climatic zones of Sri Lanka showed statistically significant (p < 0.01) relationships with the occurrence of drought relief. The 9-month cumulative drought index provided the strongest relationships overall, although 6- and 12-month indicators provided generally similar results. Some cases of appreciable drought without corresponding relief payments could be attributed to fiscal pressures, as during the 1970s. Statistically significant relationships between drought indicators and relief payments point to the potential utility of meteorological drought assessments for disaster risk management. In addition, the study provides an empirical approach to testing which meteorological drought indicators bear a statistically significant relationship to drought relief across a wide range of tropical climates.


Water Policy ◽  
2014 ◽  
Vol 17 (5) ◽  
pp. 865-886 ◽  
Author(s):  
Furat A. M. Al-Faraj ◽  
Miklas Scholz ◽  
Dimitris Tigkas ◽  
Martino Boni

There is growing concern in Iraq about the inefficiency of reactive drought management practices. Corresponding actions are largely characterized as emergency-based responses that treat the symptoms of drought rather than consider the vulnerability components associated with impacts. The Diyala watershed shared between Iraq and Iran has been used as an example transboundary river basin marked by ineffectiveness of drought management. The standardized precipitation index and the reconnaissance drought index were used to determine the historical meteorological drought episodes and analysis indicated climate change-induced alterations in the area. Spatiotemporal drought maps were drawn, which can be used for the identification of drought prone areas and assist with proactive planning. This paper discusses the underlying causes of the impairments of drought management policies, and the challenges and difficulties accompanying the governance of drought in Iraq. Given the influence of climate change and the upstream anthropogenic pressures, the time has come to adopt a gradual nation-wide transition step to drought risk planning incorporating a management approach at the transboundary scale. Moreover, the institutional and technical water vulnerability components associated with drought management should be considered in an integrated manner. The paper presents a generic technical template to support decision-makers in drought risk management.


2021 ◽  
Author(s):  
Beatrix Izsák ◽  
Tamás Szentimrey ◽  
Mónika Lakatos ◽  
Rita Pongrácz

<p>To study climate change, it is essential to analyze extremes as well. The study of extremes can be done on the one hand by examining the time series of extreme climatic events and on the other hand by examining the extremes of climatic time series. In the latter case, if we analyze a single element, the extreme is the maximum or minimum of the given time series. In the present study, we determine the extreme values of climatic time series by examining several meteorological elements together and thus determining the extremes. In general, the main difficulties are connected with the different probability distribution of the variables and the handling of the stochastic connection between them. The first issue can be solved by the standardization procedures, i.e. to transform the variables into standard normal ones. For example, the Standardized Precipitation Index (SPI) uses precipitation sums assuming gamma distribution, or the standardization of temperature series assumes normal distribution. In case of more variables, the problem of stochastic connection can be solved on the basis of the vector norm of the variables defined by their covariance matrix. According to this methodology we have developed a new index in order to examine the precipitation and temperature variables jointly. We present the new index with the mathematical background, furthermore some examples for spatio-temporal examination of these indices using our software MASH (Multiple Analysis of Series for Homogenization; Szentimrey) and MISH (Meteorological Interpolation based on Surface Homogenized Data Basis; Szentimrey, Bihari). For our study, we used the daily average temperature and precipitation time series in Hungary for the period 1870-2020. First of all, our analyses indicate that even though some years may not be considered extreme if only either precipitation or average temperature is taken in to account, but examining the two elements together these years were extreme years indeed. Based on these, therefore, the study of the extremes of multidimensional climate time series complements and thus makes the study of climate change more efficient compared to examining only one-dimensional time series.</p>


Author(s):  
Huseyin Yildirim Dalkilic

The climate covers a series of events that deeply affect human life. It is possible to understand these events through spatial and statistical analyzes. Today, climate change, which is one of the most important of these events and the impact factors of consequences of this change, become a current issue. Drought is cited as one of the consequences of climate change and it is important to examine it with various methods as it can give negative results to both the economy and the nature. In this study, the drought status of the regions where these stations are located and the effects of drought on climate change were statistically calculated and evaluated using Standardized Precipitation Index (SPI), Percentage of Normal Index (PNI), Aridity Index (AI) and Standardized Precipitation -Evopotranspiration Index (SPEI). The precipitation data from 1981 to 2010 were obtained from Cihanbeyli, Karapınar, Çumra, Seydişehir, Kulu, Ereğli, Niğde, Karaman, Beyşehir and Aksaray meteorology stations affiliated to Turkish State Meteorological Service. At the same time, factor analysis and validity-reliability analysis were conducted to test the computability of the indices used in the study as a single index and to determine the reliability of the operations. While using exploratory factor analysis, Kaiser-Meyer-Olkin (KMO) test and Barlett test for factor analysis; Cronbach's alpha coefficient was used for reliability analysis. In our study, K-Means Cluster Analysis method was performed to determine the cutoff values of indices. According to the result of cluster analysis for the new (common) index, new clusters were created and ANOVA test was conducted to determine whether there was a difference between clusters.


2014 ◽  
Author(s):  
Elise Mulder Osenga

Studying the impacts of climate change requires looking at a multitude of variables across a broad range of sectors [1,2]. Information on the variables involved is often unevenly available or offers different uncertainties [3,4], and a lack of uniform terminology and methods further complicates the process of analysis, resulting in communication gaps when research enterprises span different sectors. For example, models designed by experts in one given discipline might assume conventions in language or oversimplify cross-disciplinary links in a way that is unfamiliar for scientists in another discipline. Geospatial Semantic Array Programming (GeoSemAP) offers the potential to move toward overcoming these challenges by promoting a uniform approach to data collection and sharing [5]. The Joint Research Centre of the European Commission has been exploring the use of geospatial semantics through a module in the PESETA II project (Projection of economic impacts of climate change in sectors of the European Union based on bottom-up analysis). <BR/>This manuscript has been accepted for publication in IEEE Earthzine 2014 Vol. 7 Issue 2, 2nd quarter theme: Geospatial Semantic Array Programming. The definitive version will be published at: http://www.earthzine.org/


2016 ◽  
Vol 107 (1) ◽  
pp. 229 ◽  
Author(s):  
Tjaša POGAČAR ◽  
Ajda VALHER ◽  
Mateja ZALAR ◽  
Zalika ČREPINŠEK ◽  
Lučka KAJFEŽ-BOGATAJ

Climate factors that are proposed to determine agriculturally less favoured areas (LFA) in Slovenia were analyzed for the period 1981–2010. Following the instructions of European Commission prepared by Joint Research Centre (JRC) 30-years averages of low air temperatures criteria (the vegetation period duration and sums of effective air temperatures) and aridity criteria (aridity index <em>AI</em>) have to be calculated. Calculations were additionally done using Slovenian Environment Agency (ARSO) method, which is slightly different when determining temperature thresholds. Only hilly areas are below the LFA low air temperatures threshold with the lowest located meteorological station in Rateče. According to aridity criteria no area in Slovenia is below the threshold, so meteorological water balance was also examined. Average water balance in the period 1981–2010 was in most of locations lower than in the period 1971–2000. Climate change impacts are already expressed as trend presence in time series of studied variables, so it is recommended to calculate trends and take them into account or to perform regular iterations of calculations.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2610
Author(s):  
Veronika Lukasová ◽  
Jaroslav Vido ◽  
Jana Škvareninová ◽  
Svetlana Bičárová ◽  
Helena Hlavatá ◽  
...  

The changes in precipitation and temperature regimes brought on by the current climate change have influenced ecosystems globally. The consequences of climate change on plant phenology have been widely investigated during the last few years. However, the underlying causes of the timing of autumn phenology have not been fully clarified yet. Here, we focused on the onset (10%) of leaf colouring—LCO—(Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) 92) of European beech (Fagus sylvatica, L.) as an important native tree species growing throughout Europe. Studied beech stands are located along the natural distribution range of the European beech in Western Carpathians (Slovakia) at different altitudes from lowlands (300 m a.s.l.) to uplands (1050 m a.s.l.) and climatic regions from warm to cold. To define limiting climate conditions for LCO, we established several bioclimatic indices as indicators of meteorological drought: climatic water balance (CWB), standardized precipitation index (SPI), standardized precipitation-evapotranspiration index (SPEI), dry period index (DPI), and heat waves (HW). In addition, meteorological variables such as monthly mean temperatures and precipitation totals were taken into account. Throughout the 23-year period (1996–2018) of ground-based phenological observations of temperate beech forests, the timing of LCO was significantly delayed (p ≤ 0.05) in the middle to high altitudes, while in the lowest altitude, it remained unchanged. Over the last decade, 2009–2018, LCO in middle altitudes started at comparable to low altitudes and, at several years, even later. This resulted mainly from the significant negative effect of drought prior to this phenological phase (p ≤ 0.01) expressed through a 1-month SPI in September (SPIIX) at the stand at the low-altitude and warm-climatic region. Our results indicate that the meteorological drought conditioned by lower total precipitation and higher evapotranspirative demands in the warmer climate advance leaf senescence. However, at present time, growth in rising temperature and precipitation is acceptable for most beech stands at middle to high altitudes. Beech utilizes these conditions and postpones the LCO by 0.3–0.5 and 0.6–1.2 day per year at high and middle altitudes, respectively. Although we show the commencing negative effect of drought at mid-altitudes with lower (below 700 mm) total annual precipitation, the trend of LCO in favourable warm climates is still significantly delayed. The ongoing warming trend of summer months suggests further intensification of drought as has started to occur in middle altitudes, spreading from the continual increase of evapotranspiration over the next decades.


Sign in / Sign up

Export Citation Format

Share Document