scholarly journals Difference of SPAC composition and control factors of different vegetation zones in north slope of Qilian Mountains

2021 ◽  
Author(s):  
Yuwei Liu ◽  
Guofeng Zhu ◽  
Zhuanxia Zhang ◽  
Zhigang Sun ◽  
Leilei Yong ◽  
...  

Abstract. Understanding the differences and controlling factors of stable water isotopes in the soil-plant-atmosphere continuum of different vegetation zones has important guiding significance for revealing the hydrological processes and regional water cycle mechanisms.This study selected three different vegetation zones (alpine meadows, forests, and arid piedmont zones) in the Shiyang River Basin for study. This paper’s analysis results show that: (1) In SPAC, precipitation isotope has the main controlling effect. From alpine meadows to arid foothills, as the altitude decreases, the temperature effect of precipitation isotopes increases. (2) From the alpine meadow to the arid foothills, the soil water isotope is gradually enriched, indicating that the evaporation is gradually increasing. (3) Alpine meadow plants are mainly supplied by precipitation in the rainy season; forest plants mainly utilize soil water in the dry season and precipitation in the rainy season. The soil water in the arid mountain foothills is mainly recharged by groundwater, and the evaporation and fractionation of plant isotopes are very strong.This research will help understand the SPAC system’s water cycle at different altitudes and climates on high mountains.

2016 ◽  
Vol 20 (9) ◽  
pp. 3873-3894 ◽  
Author(s):  
Natalie Orlowski ◽  
Philipp Kraft ◽  
Jakob Pferdmenges ◽  
Lutz Breuer

Abstract. A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored for much longer than event water (average water age is 16 years). Tracing stable water isotopes through the water cycle in combination with our hydrological model was valuable for determining interactions between different water cycle components and unravelling age dynamics within the study area. This knowledge can further improve catchment-specific process understanding of developed, human-impacted landscapes.


2015 ◽  
Vol 12 (2) ◽  
pp. 1809-1853 ◽  
Author(s):  
N. Orlowski ◽  
P. Kraft ◽  
L. Breuer

Abstract. Conducting a dual stable water isotope (δ2H and δ18O) study in the developed landscape of the Schwingbach catchment (Germany) helped to unravel connectivity and disconnectivity between the different water cycle components. The two-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are decoupled from the annual precipitation cycle but showed bidirectional interactions between each other. Seasonal variations based on temperature effects were observed in the precipitation signal but neither reflected in stream nor in groundwater isotopic signatures. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ-values. A spatially distributed snapshot sampling of soil water isotopes in two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that top soil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils explaining the isotopic similarities between top and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence smoothed out with depth and soil water approached groundwater δ-values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depth > 0.9 m and constant values were observed through space and time. Little variation in individual isotope time series of stream and groundwater restricted the use of classical isotope hydrology techniques e.g. mean transit time estimation or hydrograph separation. Still, tracing stable water isotopes through the water cycle was valuable for determining interactions between different water cycle components and gaining catchment specific process understanding in a developed, human-impacted landscape.


2021 ◽  
Vol 13 (2) ◽  
pp. 807
Author(s):  
Wanrui Zhu ◽  
Wenhua Li ◽  
Peili Shi ◽  
Jiansheng Cao ◽  
Ning Zong ◽  
...  

Understanding how soil water source is used spatiotemporally by tree species and if native species can successfully coexist with introduced species is crucial for selecting species for afforestation. In the rocky mountainous areas of the Taihang Mountains, alien Robinia pseudoacacia L. has been widely afforested into the native shrublands dominated by Ziziphus jujuba Mill var. spinosa and Vitex negundo L. var. heterophylla to improve forest coverage and soil nutrients. However, little is known about the water relation among species, especially seasonal water use sources in different microsites. We selected the soil and plant xylem samples of two opposite microtopographic sites (ridge and valley) monthly in the growth season to analyze isotope composition. The proportions of water sources were quantified by the MixSIAR model and compared pairwise between species, microsites and seasons. We found that deep subsoil water at a depth of 40–50 cm contributed up to 50% of the total water uptake for R. pseudoacacia and Z. jujuba in the growing season, indicating that they stably used deeper soil water and had intense water competition. However, V. negundo had a more flexible water use strategy, which derived more than 50% of the total water uptake from the soil layer of 0–10 cm in the rainy season, but majorly captured soil water at a depth of 30–50 cm in the dry season. Therefore, high niche overlaps were shown in V. negundo with the other two species in the dry season, but niche segregation was seen in the rainy season. The microtopographic sites did not shift the seasonal dynamic of the water source use patterns of the three studied species, but the water use niche overlap was higher in the valley than in the ridge. Taken together, the introduced species R. pseudoacacia intensified water competition with the native semi-arbor species Z. jujuba, but it could commonly coexist with the native shrub species V. negundo. Therefore, our study on seasonal water use sources in different microsites provides insight into species interaction and site selection for R. pseudoacacia afforestation in the native shrub community in rocky mountainous areas. It is better to plant R. pseudoacacia in the shrubland in the valley so as to avoid intense water competition and control soil erosion.


2021 ◽  
Author(s):  
Aina Johannessen ◽  
Alena Dekhtyareva ◽  
Andrew Seidl ◽  
Harald Sodemann

<p>Transport of water from an evaporation source towards a precipitation sink is the essence of the atmospheric water cycle. However, there are significant challenges with the representation of the atmospheric water cycle in models. For example, incomplete representation of sub-grid scale processes like evaporation, mixing or precipitation can lead to substantial model errors. Here we investigate the combined use of Lagrangian and Eulerian models and in-situ observations of stable water isotopes to reduce such sources of model error. The atmospheric water cycle in the Nordic Seas during cold air outbreaks (CAOs) is confined to a limited area, and thus may be used as a natural laboratory for hydrometeorological studies. We apply Lagrangian and Eulerian models together with observations taken during the ISLAS2020 field campaign in the Arctic in spring 2020 for characterising source-sink relationships in the water cycle. During the field campaign, we observed an alternating sequence of cold air outbreaks (CAO) and warm air intrusions (WAI) over the key measurement sites of Svalbard and northern Norway. Thereby, meteorological and stable water isotope measurements have been performed at multiple sites both upstream and downstream of the CAOs and WAIs. The Lagrangian model FLEXPART has been run with the input data from the regional convection-permitting numerical weather prediction model AROME Arctic at 2.5 km resolution to investigate transport patterns. The combination of observations and model simulations allows us to quantify the connection between source and sink for different weather systems, as well as the link between large-scale transport and stable water isotopes. Findings will lead to a better understanding of processes in the water cycle and the degree of conservation of isotopic signals during transport. This study may also serve as a guideline on how to evaluate the performance of Lagrangian transport models using stable water isotope measurements, and on how to detect constraints for quantifying the transport route and evaporation source from stable water isotope measurements for future work, including an aircraft campaign planned in 2021.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tao Pan ◽  
Shuai Hou ◽  
Yujie Liu ◽  
Qinghua Tan

AbstractSoil water retention curve (SWRC) plays an important role in simulating soil water movement and assessing soil water holding capacity and availability. Comparison of fitness between different models to determine the best SWRC model of specific regions is required. In this study, three popular models, van Genuchten, Brooks Corey and Gardner model, were selected for comparing in a degraded alpine meadow region on the eastern Tibetan Plateau. Fitness, error distribution along with key parameters were compared. For each soil horizon, the soil moisture content at all soil water potentials decreased consistently with degradation, thereby integrally moving the SWRCs of all soil depths downward with degradation. The differences in SWRCs across various degradation degrees diminished along with soil depth and soil water potential. The Adj.r2 values of van Genuchten, Brooks Corey and Gardner models ranged in 0.971–0.995, 0.958–0.997, and 0.688–0.909, respectively. The van Genuchten and Brooks Corey models significantly (p < 0.05) outperformed the Gardner model, and have no significant differences in fitness. The fitness of all three models showed no significant changes with degradation. Regardless of degradation degree and soil depth, the fitting error of van Genuchten and Brooks Corey models was mainly distributed in the higher (from –100 hPa to –500 hPa) and lower (below –10000 hPa) potential sections. With regard to the parameters of van Genuchten and Brooks Corey models, the field capacity (θs), and permanent wilting moisture were highly coherent with Adj.r2 values of higher than 0.98, while the curve shape parameter (θr), and air entry pressure of the Brooks Corey model were much lower than those of the van Genuchten model with Adj.r2 values of lower than 0.91. The SWRCs with varying degrees of degradation are best fitted by both van Genuchten and Brooks Corey models but cannot be fitted by Gardner model. Soil water holding capacity decreased with degradation especially in the top soil (0 cm to 30 cm), but the curve shape of all SWRCs did not change significantly with degradation.


2012 ◽  
Vol 59 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
B. Wang ◽  
W. Liu ◽  
Q. Xue ◽  
T. Dang ◽  
C. Gao ◽  
...  

The objective of this study was to investigate the effect of nitrogen (N) management on soil water recharge, available soil water at sowing (ASWS), soil water depletion, and wheat (Triticum aestivum L.) yield and water use efficiency (WUE) after long-term fertilization. We collected data from 2 experiments in 2 growing seasons. Treatments varied from no fertilization (CK), single N or phosphorus (P), N and P (NP), to NP plus manure (NPM). Comparing to CK and single N or P treatments, NP and NPM reduced rainfall infiltration depth by 20&ndash;60 cm, increased water recharge by 16&ndash;21 mm, and decreased ASWS by 89&ndash;133 mm in 0&ndash;300 cm profile. However, crop yield and WUE continuously increased in NP and NPM treatments after 22 years of fertilization. Yield ranged from 3458 to 3782 kg/ha in NP or NPM but was 1246&ndash;1531 kg/ha in CK and single N or P. WUE in CK and single N or P treatments was &lt; 6 kg/ha/mm but increased to 12.1 kg/ha/mm in a NP treatment. The NP and NPM fertilization provided benefits for increased yield and WUE but resulted in lower ASWS. Increasing ASWS may be important for sustainable yield after long-term fertilization.


2019 ◽  
Vol 12 (5) ◽  
pp. 834-845
Author(s):  
Tingting An ◽  
Mingjie Xu ◽  
Tao Zhang ◽  
Chengqun Yu ◽  
Yingge Li ◽  
...  

Abstract Aims Evapotranspiration (ET) is an important component of the terrestrial water cycle and is easily affected by external disturbances, such as climate change and grazing. Identifying ET responses to grazing is instructive for determining grazing activity and informative for understanding the water cycle. Methods This study utilized 2 years (2014 and 2017) of eddy covariance data to test how grazing regulated ET for an alpine meadow ecosystem on the Tibetan Plateau (TP) by path analysis. Important Findings Radiation dominated ET with a decision coefficient of 64–74%. The soil water content (SWC) worked as the limiting factor in the fenced site. However, in the grazing site, the limiting factor was the vapor pressure deficit (VPD). Grazing had large effects on ET because it greatly affected the water conditions. The SWC and VPD were enhanced by 14.63% and 4.36% in the grazing site, respectively. Therefore, sufficient water was supplied to ET, especially during drought, and strengthened the transpiration pull. As a result, a favorable micrometeorological environment was created for ET. Grazing shifted the limiting factor of ET from the SWC to VPD, which weakened the limiting effect of the water conditions on ET and advanced the ET peak time. In addition, grazing altered the compositions of ET by changing the community structure, which directly resulted in an increased ET. In summary, grazing enhanced ET through altering the community structure and micrometeorological environments. The findings of this study further improve our understanding of the driving mechanisms of grazing on ET and will improve our predictions for the global water cycle.


2016 ◽  
Vol 65 (3) ◽  
pp. 360-370 ◽  
Author(s):  
Shuhui Yu ◽  
Jintong Liu ◽  
A. Egrinya Eneji ◽  
Lipu Han ◽  
Limei Tan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Dong ◽  
Xin Guo ◽  
Keyu Chen ◽  
Shijie Ren ◽  
Muhammad Atif Muneer ◽  
...  

Plants and arbuscular mycorrhizal fungi (AMF) can form complex symbiotic networks based on functional trait selection, contributing to the maintenance of ecosystem biodiversity and stability. However, the selectivity of host plants on AMF and the characteristics of plant-AMF networks remain unclear in Tibetan alpine meadows. In this study, we studied the AMF communities in 69 root samples from 23 plant species in a Tibetan alpine meadow using Illumina-MiSeq sequencing of the 18S rRNA gene. The results showed a significant positive correlation between the phylogenetic distances of plant species and the taxonomic dissimilarity of their AMF community. The plant-AMF network was characterized by high connectance, high nestedness, anti-modularity, and anti-specialization, and the phylogenetic signal from plants was stronger than that from AMF. The high connected and nested plant-AMF network potentially promoted the interdependence and stability of the plant-AMF symbioses in Tibetan alpine meadows. This study emphasizes that plant phylogeny and plant-AMF networks play an important role in the coevolution of host plants and their mycorrhizal partners and enhance our understanding of the interactions between aboveground and belowground communities.


Sign in / Sign up

Export Citation Format

Share Document